skip to main content


Title: Learning from Optimal: Energy Procurement Strategies for Data Centers
Environmental concerns and rising grid prices have motivated data center owners to invest in on-site renewable energy sources. How- ever, these sources present challenges as they are unreliable and intermittent. In an effort to mitigate these issues, data centers are incorporating energy storage systems. This introduces the oppor- tunity for electricity bill reduction, as energy storage can be used for power market arbitrage. We present two supervised learning-based algorithms, LearnBuy, that learns the amount to purchase, and LearnStore, that learns the amount to store, to solve this energy procurement problem. These algorithms utilize the idea of "learning from optimal" by using the values generated by the offline optimization as a label for training. We test our algorithms on a general case, considering buying and selling back to the grid, and a special case, considering only buying from the grid. In the general case, LearnStore achieves a 10-16% reduction compared to baseline heuristics, whereas in the special case, LearnBuy achieves a 7% reduction compared to prior art.  more » « less
Award ID(s):
1763617 1413998 1908298
NSF-PAR ID:
10173201
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Tenth ACM International Conference on Future Energy Systems (e-Energy ’19)
Page Range / eLocation ID:
326 to 330
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We aim to preserve a large amount of data generated insidebase station-less sensor networks(BSNs) while considering that sensor nodes are selfish. BSNs refer to emerging sensing applications deployed in challenging and inhospitable environments (e.g., underwater exploration); as such, there do not exist data-collecting base stations in the BSN to collect the data. Consequently, the generated data has to be stored inside the BSN before uploading opportunities become available. Our goal is to preserve the data inside the BSN with minimum energy cost by incentivizing the storage- and energy-constrained sensor nodes to participate in the data preservation process. We refer to the problem as DPP:datapreservationproblem in the BSN. Previous research assumes that all the sensor nodes are cooperative and that sensors have infinite battery power and design a minimum-cost flow-based data preservation solution. However, in a distributed setting and under different control, the resource-constrained sensor nodes could behave selfishly only to conserve their resources and maximize their benefit.

    In this article, we first solve DPP by designing an integer linear programming (ILP)-based optimal solution without considering selfishness. We then establish a game-theoretical framework that achieves provably truthful and optimal data preservation in BSNs. For a special case of DPP wherein nodes are not energy-constrained, referred to as DPP-W, we design a data preservation game DPG-1 that integrates algorithmic mechanism design (AMD) and a more efficient minimum cost flow-based data preservation solution. We show that DPG-1 yields dominant strategies for sensor nodes and delivers truthful and optimal data preservation. For the general case of DPP (wherein nodes are energy-constrained), however, DPG-1 fails to achieve truthful and optimal data preservation. Utilizing packet-level flow observation of sensor node behaviors computed by minimum cost flow and ILP, we uncover the cause of the failure of the DPG-1. It is due to the packet dropping by the selfish nodes that manipulate the AMD technique. We then design a data preservation game DPG-2 for DPP that traces and punishes manipulative nodes in the BSN. We show that DPG-2 delivers dominant strategies for truth-telling nodes and achieves provably optimal data preservation with cheat-proof guarantees. Via extensive simulations under different network parameters and dynamics, we show that our games achieve system-wide data preservation solutions with optimal energy cost while enforcing truth-telling of sensor nodes about their private cost types. One salient feature of our work is its integrated game theory and network flows approach. With the observation of flow level sensor node behaviors provided by the network flows, our proposed games can synthesize “microscopic” (i.e., selfish and local) behaviors of sensor nodes and yield targeted “macroscopic” (i.e., optimal and global) network performance of data preservation in the BSN.

     
    more » « less
  2. Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a non-symmetric Lanczos algorithm written in J-symmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nite-dierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich data-manifolds), a nite-dierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in port-Hamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible non-positivity of conductors for the non-Stieltjes case, we introduce an additional complex s-dependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on Krein-Nudelman theory [5], that results in special data-driven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the three-point second dierences: I. A two-point positive denite problem in a semi-innite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graph-Laplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go back 
    more » « less
  3. Model compression is an important technique to facilitate efficient embedded and hardware implementations of deep neural networks (DNNs), a number of prior works are dedicated to model compression techniques. The target is to simultaneously reduce the model storage size and accelerate the computation, with minor effect on accuracy. Two important categories of DNN model compression techniques are weight pruning and weight quantization. The former leverages the redundancy in the number of weights, whereas the latter leverages the redundancy in bit representation of weights. These two sources of redundancy can be combined, thereby leading to a higher degree of DNN model compression. However, a systematic framework of joint weight pruning and quantization of DNNs is lacking, thereby limiting the available model compression ratio. Moreover, the computation reduction, energy efficiency improvement, and hardware performance overhead need to be accounted besides simply model size reduction, and the hardware performance overhead resulted from weight pruning method needs to be taken into consideration. To address these limitations, we present ADMM-NN, the first algorithm-hardware co-optimization framework of DNNs using Alternating Direction Method of Multipliers (ADMM), a powerful technique to solve non-convex optimization problems with possibly combinatorial constraints. The first part of ADMM-NN is a systematic, joint framework of DNN weight pruning and quantization using ADMM. It can be understood as a smart regularization technique with regularization target dynamically updated in each ADMM iteration, thereby resulting in higher performance in model compression than the state-of-the-art. The second part is hardware-aware DNN optimizations to facilitate hardware-level implementations. We perform ADMM-based weight pruning and quantization considering (i) the computation reduction and energy efficiency improvement, and (ii) the hardware performance overhead due to irregular sparsity. The first requirement prioritizes the convolutional layer compression over fully-connected layers, while the latter requires a concept of the break-even pruning ratio, defined as the minimum pruning ratio of a specific layer that results in no hardware performance degradation. Without accuracy loss, ADMM-NN achieves 85× and 24× pruning on LeNet-5 and AlexNet models, respectively, --- significantly higher than the state-of-the-art. The improvements become more significant when focusing on computation reduction. Combining weight pruning and quantization, we achieve 1,910× and 231× reductions in overall model size on these two benchmarks, when focusing on data storage. Highly promising results are also observed on other representative DNNs such as VGGNet and ResNet-50. We release codes and models at https://github.com/yeshaokai/admm-nn. 
    more » « less
  4. With the acceleration of ICT technologies and the Internet of Things (IoT) paradigm, smart residential environments , also known as smart homes are becoming increasingly common. These environments have significant potential for the development of intelligent energy management systems, and have therefore attracted significant attention from both academia and industry. An enabling building block for these systems is the ability of obtaining energy consumption at the appliance-level. This information is usually inferred from electric signals data (e.g., current) collected by a smart meter or a smart outlet, a problem known as appliance recognition . Several previous approaches for appliance recognition have proposed load disaggregation techniques for smart meter data. However, these approaches are often very inaccurate for low consumption and multi-state appliances. Recently, Machine Learning (ML) techniques have been proposed for appliance recognition. These approaches are mainly based on passive MLs, thus requiring pre-labeled data to be trained. This makes such approaches unable to rapidly adapt to the constantly changing availability and heterogeneity of appliances on the market. In a home setting scenario, it is natural to consider the involvement of users in the labeling process, as appliances’ electric signatures are collected. This type of learning falls into the category of Stream-based Active Learning (SAL). SAL has been mainly investigated assuming the presence of an expert , always available and willing to label the collected samples. Nevertheless, a home user may lack such availability, and in general present a more erratic and user-dependent behavior. In this paper, we develop a SAL algorithm, called K -Active-Neighbors (KAN), for the problem of household appliance recognition. Differently from previous approaches, KAN jointly learns the user behavior and the appliance signatures. KAN dynamically adjusts the querying strategy to increase accuracy by considering the user availability as well as the quality of the collected signatures. Such quality is defined as a combination of informativeness , representativeness , and confidence score of the signature compared to the current knowledge. To test KAN versus state-of-the-art approaches, we use real appliance data collected by a low-cost Arduino-based smart outlet as well as the ECO smart home dataset. Furthermore, we use a real dataset to model user behavior. Results show that KAN is able to achieve high accuracy with minimal data, i.e., signatures of short length and collected at low frequency. 
    more » « less
  5. A variety of advanced machine learning and deep learning algorithms achieve state-of-the-art performance on various temporal processing tasks. However, these methods are heavily energy inefficient—they run mainly on the power hungry CPUs and GPUs. Computing with Spiking Networks, on the other hand, has shown to be energy efficient on specialized neuromorphic hardware, e.g., Loihi, TrueNorth, SpiNNaker, etc. In this work, we present two architectures of spiking models, inspired from the theory of Reservoir Computing and Legendre Memory Units, for the Time Series Classification (TSC) task. Our first spiking architecture is closer to the general Reservoir Computing architecture and we successfully deploy it on Loihi; the second spiking architecture differs from the first by the inclusion of non-linearity in the readout layer. Our second model (trained with Surrogate Gradient Descent method) shows that non-linear decoding of the linearly extracted temporal features through spiking neurons not only achieves promising results, but also offers low computation-overhead by significantly reducing the number of neurons compared to the popular LSM based models—more than 40x reduction with respect to the recent spiking model we compare with. We experiment on five TSC datasets and achieve new SoTA spiking results (—as much as 28.607% accuracy improvement on one of the datasets), thereby showing the potential of our models to address the TSC tasks in a green energy-efficient manner. In addition, we also do energy profiling and comparison on Loihi and CPU to support our claims. 
    more » « less