skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Visual Segmentation for Information Extraction from Heterogeneous Visually Rich Documents
Physical and digital documents often contain visually rich information. With such information, there is no strict order- ing or positioning in the document where the data values must appear. Along with textual cues, these documents often also rely on salient visual features to define distinct semantic boundaries and augment the information they disseminate. When performing information extraction (IE), traditional techniques fall short, as they use a text-only representation and do not consider the visual cues inherent to the layout of these documents. We propose VS2, a generalized approach for information extraction from heterogeneous visually rich documents. There are two major contributions of this work. First, we propose a robust segmentation algorithm that de- composes a visually rich document into a bag of visually iso- lated but semantically coherent areas, called logical blocks. Document type agnostic low-level visual and semantic fea- tures are used in this process. Our second contribution is a distantly supervised search-and-select method for identify- ing the named entities within these documents by utilizing the context boundaries defined by these logical blocks. Ex- perimental results on three heterogeneous datasets suggest that the proposed approach significantly outperforms its text-only counterparts on all datasets. Comparing it against the state-of-the-art methods also reveal that VS2 performs comparably or better on all datasets.  more » « less
Award ID(s):
1910356
PAR ID:
10173223
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Management of Data (SIGMOD), 2019
Page Range / eLocation ID:
247 to 262
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Along with textual content, visual features play an essential role in the semantics of visually rich documents. Information extraction (IE) tasks perform poorly on these documents if these visual cues are not taken into account. In this paper, we present Artemis - a visually aware, machine-learning-based IE method for heterogeneous visually rich documents. Artemis represents a visual span in a document by jointly encoding its visual and textual context for IE tasks. Our main contribution is two-fold. First, we develop a deep-learning model that identifies the local context boundary of a visual span with minimal human-labeling. Second, we describe a deep neural network that encodes the multimodal context of a visual span into a fixed-length vector by taking its textual and layout-specific features into account. It identifies the visual span(s) containing a named entity by leveraging this learned representation followed by an inference task. We evaluate Artemis on four heterogeneous datasets from different domains over a suite of information extraction tasks. Results show that it outperforms state-of-the-art text-based methods by up to 17 points in F1-score. 
    more » « less
  2. A real-world text corpus sometimes comprises not only text documents, but also semantic links between them (e.g., academic papers in a bibliographic network are linked by citations and co-authorships). Text documents and semantic connections form a text-rich network, which empowers a wide range of downstream tasks such as classification and retrieval. However, pretraining methods for such structures are still lacking, making it difficult to build one generic model that can be adapted to various tasks on text-rich networks. Current pretraining objectives, such as masked language modeling, purely model texts and do not take inter-document structure information into consideration. To this end, we propose our PretrAining on TexT-Rich NetwOrk framework PATTON. PATTON1 includes two pretraining strategies: network-contextualized masked language modeling and masked node prediction, to capture the inherent dependency between textual attributes and network structure. We conduct experiments on four downstream tasks in five datasets from both academic and e-commerce domains, where PATTON outperforms baselines significantly and consistently. 
    more » « less
  3. Current research in form understanding predominantly relies on large pre-trained language models, necessitating extensive data for pre-training. However, the importance of layout structure (i.e., the spatial relationship between the entity blocks in the visually rich document) to relation extraction has been overlooked. In this paper, we propose REgion-Aware Relation Extraction (\bf{RE^2}) that leverages region-level spatial structure among the entity blocks to improve their relation prediction. We design an edge-aware graph attention network to learn the interaction between entities while considering their spatial relationship defined by their region-level representations. We also introduce a constraint objective to regularize the model towards consistency with the inherent constraints of the relation extraction task. To support the research on relation extraction from visually rich documents and demonstrate the generalizability of \bf{RE^2}, we build a new benchmark dataset, DiverseForm, that covers a wide range of domains. Extensive experiments on DiverseForm and several public benchmark datasets demonstrate significant superiority and transferability of \bf{RE^2} across various domains and languages, with up to 18.88% absolute F-score gain over all high-performing baselines 
    more » « less
  4. Classifying heterogeneous visually rich documents is a challenging task. Difficulty of this task increases even more if the maximum allowed inference turnaround time is constrained by a threshold. The increased overhead in inference cost, compared to the limited gain in classification capabilities make current multi-scale approaches infeasible in such scenarios. There are two major contributions of this work. First, we propose a spatial pyramid model to extract highly discriminative multi-scale feature descriptors from a visually rich document by leveraging the inherent hierarchy of its layout. Second, we propose a deterministic routing scheme for accelerating end-to-end inference by utilizing the spatial pyramid model. A depth-wise separable multi-column convolutional network is developed to enable our method. We evaluated the proposed approach on four publicly available, benchmark datasets of visually rich documents. Results suggest that our proposed approach demonstrates robust performance compared to the state-of-the-art methods in both classification accuracy and total inference turnaround. 
    more » « less
  5. null (Ed.)
    Text categorization is an essential task in Web content analysis. Considering the ever-evolving Web data and new emerging categories, instead of the laborious supervised setting, in this paper, we focus on the minimally-supervised setting that aims to categorize documents effectively, with a couple of seed documents annotated per category. We recognize that texts collected from the Web are often structure-rich, i.e., accompanied by various metadata. One can easily organize the corpus into a text-rich network, joining raw text documents with document attributes, high-quality phrases, label surface names as nodes, and their associations as edges. Such a network provides a holistic view of the corpus’ heterogeneous data sources and enables a joint optimization for network-based analysis and deep textual model training. We therefore propose a novel framework for minimally supervised categorization by learning from the text-rich network. Specifically, we jointly train two modules with different inductive biases – a text analysis module for text understanding and a network learning module for class-discriminative, scalable network learning. Each module generates pseudo training labels from the unlabeled document set, and both modules mutually enhance each other by co-training using pooled pseudo labels. We test our model on two real-world datasets. On the challenging e-commerce product categorization dataset with 683 categories, our experiments show that given only three seed documents per category, our framework can achieve an accuracy of about 92%, significantly outperforming all compared methods; our accuracy is only less than 2% away from the supervised BERT model trained on about 50K labeled documents. 
    more » « less