Acoustic reciprocity, which is widely observed in linear time-invariant systems, refers to the property that wave transmission pattern remains the same when the source and receiver are switched. Non-reciprocity, on the other hand, violates this symmetry and can be used to control wave propagation and manufacture desired propagation patterns. To break reciprocity, multiple approaches (active and passive) have been studied recently. While active manner often relies on odd-symmetry field or time-variant parameters, passive manner achieves non-reciprocity by combining geometric asymmetry and nonlinearity in the structure. In this field, researchers have studied a number of acoustic devices that allow one-way propagation1, 2. However, these devices either change the frequency content of the sending signal, or have a strict restriction on the range of sending frequency. In this paper, we propose a passive, nonlinear, periodic structure, which achieves giant non-reciprocity for a range of input frequency and energy with minimal distortion of the sending frequency.
more »
« less
Acoustic Non-Reciprocal Band Structure in a Passive, Nonlinear, 1D Material
Abstract Acoustic non-reciprocity, referring to the phenomenon of path-dependent propagation, has diverse applications in mechanical devices. This paper presents a numerical study on a periodic triangle-shape structure that breaks reciprocity in a passive manner over a broad range of frequency and energy. The proposed structure contains strong nonlinearity and geometric asymmetry, which contributes to a direction-dependent dispersion relationship. When the signal frequency falls in the band pass in one direction, and band gap in the other, a unidirectional wave propagation results. The system achieves giant non-reciprocity with minimal distortion in the frequency content of the signal.
more »
« less
- Award ID(s):
- 1741565
- PAR ID:
- 10173304
- Date Published:
- Journal Name:
- ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)An acoustic metamaterial superlattice is used for the spatial and spectral deconvolution of a broadband acoustic pulse into narrowband signals with different central frequencies. The operating frequency range is located on the second transmission band of the superlattice. The decomposition of the broadband pulse was achieved by the frequency-dependent refraction angle in the superlattice. The refracted angle within the acoustic superlattice was larger at higher operating frequency and verified by numerical calculated and experimental mapped sound fields between the layers. The spatial dispersion and the spectral decomposition of a broadband pulse were studied using lateral position-dependent frequency spectra experimentally with and without the superlattice structure along the direction of the propagating acoustic wave. In the absence of the superlattice, the acoustic propagation was influenced by the usual divergence of the beam, and the frequency spectrum was unaffected. The decomposition of the broadband wave in the superlattice’s presence was measured by two-dimensional spatial mapping of the acoustic spectra along the superlattice’s in-plane direction to characterize the propagation of the beam through the crystal. About 80% of the frequency range of the second transmission band showed exceptional performance on decomposition.more » « less
-
Abstract Recent attention has been given to acoustic non-reciprocity in metamaterials with nonlinearity. However, the study of asymmetric wave propagation has been limited to mechanical diodes only. Prior works on electromechanical rectifiers or diodes using passive mechanisms are rare in the literature. This problem is investigated here by analytically and numerically studying a combination of nonlinear and linear metamaterials coupled with electromechanical resonators. The nonlinearity of the system stems from the chain in one case and from the electromechanical resonator in another. The method of multiple scales is used to obtain analytical expressions for the dispersion curves. Numerical examples show potential for wider operation range of electromechanical diode, considerable harvested power, and significant frequency shift. The observed frequency shift is demonstrated using spectro-spatial analyses and it is used to construct an electromechanical diode to guide the wave to propagate in one direction only. This only allows signal sensing for waves propagating in one direction and rejects signals in any other direction. The performance of this electromechanical diode is evaluated using the transmission ratio and the asymmetric ratio for a transient input signal. Design guidelines are provided to obtain the best electromechanical diode performance. The presented analyses show high asymmetry ratio for directional-biased wave propagation in the medium-wavelength limit for the case of nonlinear chain. Indeed, the present asymmetric and transmission ratios are higher than those reported in the literature for a mechanical diode. The operation frequencies can also be broadened to the long-wavelength limit frequencies using the resonator nonlinearity.more » « less
-
Abstract The ability to create linear systems that manifest broadband nonreciprocal wave propagation would provide for exquisite control over acoustic signals for electronic filtering in communication and noise control. Acoustic nonreciprocity has predominately been achieved by approaches that introduce nonlinear interaction, mean-flow biasing, smart skins, and spatio-temporal parametric modulation into the system. Each approach suffers from at least one of the following drawbacks: the introduction of modulation tones, narrow band filtering, and the interruption of mean flow in fluid acoustics. We now show that an acoustic media that is non-local and active provides a new means to break reciprocity in a linear fashion without these deleterious effects. We realize this media using a distributed network of interlaced subwavelength sensor–actuator pairs with unidirectional signal transport. We exploit this new design space to create a stable metamaterial with non-even dispersion relations and electronically tunable nonreciprocal behavior over a broad range of frequencies.more » « less
-
Dynamics and topology of non-Hermitian elastic lattices with non-local feedback control interactionsAbstract We investigate non-Hermitian elastic lattices characterized by non-local feedback interactions. In one-dimensional lattices, proportional feedback produces non-reciprocity associated with complex dispersion relations characterized by gain and loss in opposite propagation directions. For non-local controls, such non-reciprocity occurs over multiple frequency bands characterized by opposite non-reciprocal behavior. The dispersion topology is investigated with focus on winding numbers and non-Hermitian skin effect, which manifests itself through bulk modes localized at the boundaries of finite lattices. In two-dimensional lattices, non-reciprocity is associated with directional wave amplification. Moreover, the combination of skin effect in two directions produces modes that are localized at the corners of finite two-dimensional lattices. Our results describe fundamental properties of non-Hermitian elastic lattices, and suggest new possibilities for the design of meta materials with novel functionalities related to selective wave filtering, amplification and localization. The considered non-local lattices also provide a platform for the investigation of topological phases of non-Hermitian systems.more » « less
An official website of the United States government

