Abstract We study the cosmological impact of warm, dark-sector relic particles produced as Hawking radiation in a primordial-black-hole-dominated universe before big bang nucleosynthesis. If these dark-sector particles are stable, they would survive to the present day asHawking relicsand modify the growth of cosmological structure. We show that such relics are produced with much larger momenta, but in smaller quantities than the familiar thermal relics considered in standard cosmology. Consequently, Hawking relics with keVâMeV masses affect the growth of large-scale structure in a similar way to eV-scale thermal relics like massive neutrinos. We model their production and evolution, and show that their momentum distributions are broader than comparable relics with thermal distributions. Warm Hawking relics affect the growth of cosmological perturbations and we constrain their abundance to be less than 2% of the dark matter over a broad range of their viable parameter space. Finally, we examine how future measurements of the matter power spectrum can distinguish Hawking relics from thermal particles.
more »
« less
Finding eV-scale Light Relics with Cosmological Observables
Cosmological data provide a powerful tool in the search for physics beyond the Standard Model (SM). An interesting target are light relics, new degrees of freedom which decoupled from the SM while relativistic. Nearly massless relics contribute to the radiation energy budget, and are commonly searched through variations in the effective number đeff of neutrino species. Additionally, relics with masses on the eV scale (meV-10 eV) become non-relativistic before today, and thus behave as matter instead of radiation. This leaves an imprint in the clustering of the large-scale structure of the universe, as light relics have important streaming motions, mirroring the case of massive neutrinos. Here we forecast how well current and upcoming cosmological surveys can probe light massive relics (LiMRs). We consider minimal extensions to the SM by both fermionic and bosonic relic degrees of freedom. By combining current and upcoming cosmic-microwave-background and large-scale-structure surveys, we forecast the significance at which each LiMR, with different masses and temperatures, can be detected. We find that a very large coverage of parameter space will be attainable by upcoming experiments, opening the possibility of exploring uncharted territory for new physics beyond the SM.
more »
« less
- Award ID(s):
- 1813694
- PAR ID:
- 10173387
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Page Range / eLocation ID:
- 1 - 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract The cosmic neutrino background is both a dramatic prediction of the hot Big Bang and a compelling target for current and future observations. The impact of relativistic neutrinos in the early universe has been observed at high significance in a number of cosmological probes. In addition, the non-zero mass of neutrinos alters the growth of structure at late times, and this signature is a target for a number of upcoming surveys. These measurements are sensitive to the physics of the neutrino and could be used to probe physics beyond the standard model in the neutrino sector. We explore an intriguing possibility where light right-handed neutrinos are coupled to all, or a fraction of, the dark matter through a mediator. In a wide range of parameter space, this interaction only becomes important at late times and is uniquely probed by late-time cosmological observables. Due to this coupling, the dark matter and neutrinos behave as a single fluid with a non-trivial sound speed, leading to a suppression of power on small scales. In current and near-term cosmological surveys, this signature is equivalent to an increase in the sum of the neutrino masses. Given current limits, we show that at most 0.5% of the dark matter could be coupled to neutrinos in this way.more » « less
-
The nature of neutrino masses and the matter-antimatter asymmetry of our universe are two of the most important open problems in particle physics today and are notoriously difficult to test with current technology. Dirac neutrinos offer a solution through a leptogenesis mechanism that hinges on the smallness of neutrino masses and resultant non-thermalization of the right-handed neutrino partners in the early universe. We thoroughly explore possible realizations of this Dirac leptogenesis idea, revealing new windows for highly efficient asymmetry generation. In many of them, the number of relativistic degrees of freedom, Neff, is severely enhanced compared to standard cosmology and offers a novel handle to constrain Dirac leptogenesis with upcoming measurements of the cosmic microwave background. Realizations involving leptoquarks even allow for low-scale post-sphaleron baryogenesis and predict proton decay. These novel aspects render Dirac leptogenesis surprisingly testable.more » « less
-
Abstract The Cosmic Gravitational Wave Background (CGWB) is an irreducible background of gravitational waves generated by particle exchange in the early Universe plasma. Standard Model particles contribute to such a stochastic background with a peak atfâŒ80 GHz. Any physics beyond the Standard Model (BSM) may modify the CGWB spectrum, making it a potential testing ground for BSM physics.We consider the impact of general BSM scenarios on the CGWB, including an arbitrary number of hidden sectors.We find that the largest amplitude of the CGWB comes from the sector that dominates the energy density after reheating and confirm the dominance of the SM for standard cosmological histories.For non-standard cosmological histories, such as those with a stiff equation of stateÏ> 1/3, like in kination, BSM physics may dominate and modify the spectrum substantially.We conclude that, if the CGWB is detected at lower frequencies and amplitudes compared to that of the SM, it will hint at extra massive degrees of freedom or hidden sectors.If it is instead measured at higher values, it will imply a period withÏ> 1/3.We argue that for scenarios with periods of kination in the early Universe, a significant fraction of the parameter space can be ruled out from dark radiation bounds at BBN.more » « less
-
The hot dense environment of the early universe is known to have produced large numbers of baryons, photons, and neutrinos. These extreme conditions may have also produced other long-lived species, including new light particles (such as axions or sterile neutrinos) or gravitational waves. The gravitational effects of any such light relics can be observed through their unique imprint in the cosmic microwave background (CMB), the large-scale structure, and the primordial light element abundances, and are important in determining the initial conditions of the universe. We argue that future cosmological observations, in particular improved maps of the CMB on small angular scales, can be orders of magnitude more sensitive for probing the thermal history of the early universe than current experiments. These observations offer a unique and broad discovery space for new physics in the dark sector and beyond, even when its effects would not be visible in terrestrial experiments or in astrophysical environments. A detection of an excess light relic abundance would be a clear indication of new physics and would provide the first direct information about the universe between the times of reheating and neutrino decoupling one second later.more » « less
An official website of the United States government

