skip to main content

This content will become publicly available on November 1, 2022

Title: Neutrino interactions in the late universe
A bstract The cosmic neutrino background is both a dramatic prediction of the hot Big Bang and a compelling target for current and future observations. The impact of relativistic neutrinos in the early universe has been observed at high significance in a number of cosmological probes. In addition, the non-zero mass of neutrinos alters the growth of structure at late times, and this signature is a target for a number of upcoming surveys. These measurements are sensitive to the physics of the neutrino and could be used to probe physics beyond the standard model in the neutrino sector. We explore an intriguing possibility where light right-handed neutrinos are coupled to all, or a fraction of, the dark matter through a mediator. In a wide range of parameter space, this interaction only becomes important at late times and is uniquely probed by late-time cosmological observables. Due to this coupling, the dark matter and neutrinos behave as a single fluid with a non-trivial sound speed, leading to a suppression of power on small scales. In current and near-term cosmological surveys, this signature is equivalent to an increase in the sum of the neutrino masses. Given current limits, we show that at most more » 0.5% of the dark matter could be coupled to neutrinos in this way. « less
Authors:
; ;
Award ID(s):
2112699
Publication Date:
NSF-PAR ID:
10334221
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
11
ISSN:
1029-8479
Sponsoring Org:
National Science Foundation
More Like this
  1. Cosmological data provide a powerful tool in the search for physics beyond the Standard Model (SM). An interesting target are light relics, new degrees of freedom which decoupled from the SM while relativistic. Nearly massless relics contribute to the radiation energy budget, and are commonly searched through variations in the effective number 𝑁eff of neutrino species. Additionally, relics with masses on the eV scale (meV-10 eV) become non-relativistic before today, and thus behave as matter instead of radiation. This leaves an imprint in the clustering of the large-scale structure of the universe, as light relics have important streaming motions, mirroringmore »the case of massive neutrinos. Here we forecast how well current and upcoming cosmological surveys can probe light massive relics (LiMRs). We consider minimal extensions to the SM by both fermionic and bosonic relic degrees of freedom. By combining current and upcoming cosmic-microwave-background and large-scale-structure surveys, we forecast the significance at which each LiMR, with different masses and temperatures, can be detected. We find that a very large coverage of parameter space will be attainable by upcoming experiments, opening the possibility of exploring uncharted territory for new physics beyond the SM.« less
  2. The hot dense environment of the early universe is known to have produced large numbers of baryons, photons, and neutrinos. These extreme conditions may have also produced other long-lived species, including new light particles (such as axions or sterile neutrinos) or gravitational waves. The gravitational effects of any such light relics can be observed through their unique imprint in the cosmic microwave background (CMB), the large-scale structure, and the primordial light element abundances, and are important in determining the initial conditions of the universe. We argue that future cosmological observations, in particular improved maps of the CMB on small angularmore »scales, can be orders of magnitude more sensitive for probing the thermal history of the early universe than current experiments. These observations offer a unique and broad discovery space for new physics in the dark sector and beyond, even when its effects would not be visible in terrestrial experiments or in astrophysical environments. A detection of an excess light relic abundance would be a clear indication of new physics and would provide the first direct information about the universe between the times of reheating and neutrino decoupling one second later.« less
  3. I introduce the consequences of neutrino mass and mixing in the dense environments of the early Universe and in astrophysical environments. Thermal and matter effects are reviewed in the context of a two-neutrino formalism, with methods of extension to multiple neutrinos. The observed large neutrino mixing angles place the strongest constraint on cosmological lepton (or neutrino) asymmetries, while new sterile neutrinos provide a wealth of possible new physics, including lepton asymmetry generation as well as candidates for dark matter. I also review cosmic microwave background and large-scale structure constraints on neutrino mass and energy density. Lastly, I review how X-raymore »astronomy has become a branch of neutrino physics in searches for keV-scale sterile neutrino dark matter radiative decay.« less
  4. Abstract Neutrinos have been proved to be unique messengers in the understanding of fundamental physics processes, and in astrophysical data sets they may provide hints of physics beyond the Standard Model. For example, neutrinos could be the key to discerning between various dark matter models that are based on Weakly Interacting Massive Particles (WIMPs). WIMPs can scatter off standard matter nuclei in the vicinity of massive bodies such as the Sun or the Earth, lose velocity, and be gravitationally trapped in the center of the body. Self-annihilation of dark matter into Standard Model particles may produce an observable flux ofmore »neutrinos. For the case of the Earth, an excess of neutrinos coming from the center of the planet could indicate WIMP capture and annihilation at the Earth’s core. The IceCube Neutrino Observatory, located at the geographical South Pole, is sensitive to these excess neutrinos. A search has been conducted on 8 years of IceCube data, probing multiple dark matter channels and masses. With this analysis, we show that IceCube has world-leading sensitivity to the spin-independent dark matter-nucleon scattering cross section above a WIMP mass of 100 GeV.« less
  5. Context. Persistent tension between low-redshift observations and the cosmic microwave background radiation (CMB), in terms of two fundamental distance scales set by the sound horizon r d and the Hubble constant H 0 , suggests new physics beyond the Standard Model, departures from concordance cosmology, or residual systematics. Aims. The role of different probe combinations must be assessed, as well as of different physical models that can alter the expansion history of the Universe and the inferred cosmological parameters. Methods. We examined recently updated distance calibrations from Cepheids, gravitational lensing time-delay observations, and the tip of the red giant branch.more »Calibrating the baryon acoustic oscillations and type Ia supernovae with combinations of the distance indicators, we obtained a joint and self-consistent measurement of H 0 and r d at low redshift, independent of cosmological models and CMB inference. In an attempt to alleviate the tension between late-time and CMB-based measurements, we considered four extensions of the standard ΛCDM model. Results. The sound horizon from our different measurements is r d  = (137 ± 3 stat.  ± 2 syst. ) Mpc based on absolute distance calibration from gravitational lensing and the cosmic distance ladder. Depending on the adopted distance indicators, the combined tension in H 0 and r d ranges between 2.3 and 5.1 σ , and it is independent of changes to the low-redshift expansion history. We find that modifications of ΛCDM that change the physics after recombination fail to provide a solution to the problem, for the reason that they only resolve the tension in H 0 , while the tension in r d remains unchanged. Pre-recombination extensions (with early dark energy or the effective number of neutrinos N eff  = 3.24 ± 0.16) are allowed by the data, unless the calibration from Cepheids is included. Conclusions. Results from time-delay lenses are consistent with those from distance-ladder calibrations and point to a discrepancy between absolute distance scales measured from the CMB (assuming the standard cosmological model) and late-time observations. New proposals to resolve this tension should be examined with respect to reconciling not only the Hubble constant but also the sound horizon derived from the CMB and other cosmological probes.« less