skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Computational Understanding of Classical (Co)Recursion
Recursion and induction are mature, well-understood topics in programming. Yet their duals, co-recursion and co-induction, are still exotic and underdeveloped programming features. We aim to put them on equal footing by giving a foundation for co-recursion based on computation, analogous to the original computational foundation of recursion. At the lower level, we show how the connection between the two can be strengthened through their implementation details in an abstract machine. At the higher level, we develop a syntactic equational theory for inductive and co-inductive reasoning based on control flow. We also observe the impact of evaluation strategy: call-by-name has efficient recursion and strong co-inductive reasoning, but call-by-value has efficient co-recursion and strong inductive reasoning.  more » « less
Award ID(s):
1719158
PAR ID:
10173477
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Symposium on Principles and Practice of Declarative Programming
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inductive relations offer a powerful and expressive way of writing program specifications while facilitating compositional reasoning. Their widespread use by proof assistant users has made them a particularly attractive target for proof engineering tools such as QuickChick, a property-based testing tool for Coq which can automatically derive generators for values satisfying an inductive relation. However, while such generators are generally efficient, there is an infrequent yet seemingly inevitable situation where their performance greatly degrades: when multiple inductive relations constrain the same piece of data. In this paper, we introduce an algorithm for merging two such inductively defined properties that share an index. The algorithm finds shared structure between the two relations, and creates a single merged relation that is provably equivalent to the conjunction of the two. We demonstrate, through a series of case studies, that the merged relations can improve the performance of automatic generation by orders of magnitude, as well as simplify mechanized proofs by getting rid of the need for nested induction and tedious low-level book-keeping. 
    more » « less
  2. Mechanized verification of liveness properties for infinite programs with effects and nondeterminism is challenging. Existing temporal reasoning frameworks operate at the level of models such as traces and automata. Reasoning happens at a very low-level, requiring complex nested (co-)inductive proof techniques and familiarity with proof assistant mechanics (e.g., the guardedness checker). Further, reasoning at the level of models instead of program constructs creates a verification gap that loses the benefits of modularity and composition enjoyed by structural program logics such as Hoare Logic. To address this verification gap, and the lack of compositional proof techniques for temporal specifications, we propose Ticl, a new structural temporal logic. Using Ticl, we encode complex (co-)inductive proof techniques as structural lemmas and focus our reasoning on variants and invariants. We show that it is possible to perform compositional proofs of general temporal properties in a proof assistant, while working at a high level of abstraction. We demonstrate the benefits of Ticl by giving mechanized proofs of safety and liveness properties for programs with scheduling, concurrent shared memory, and distributed consensus, demonstrating a low proof-to-code ratio. 
    more » « less
  3. We present Scallop, a language which combines the benefits of deep learning and logical reasoning. Scallop enables users to write a wide range of neurosymbolic applications and train them in a data- and compute-efficient manner. It achieves these goals through three key features: 1) a flexible symbolic representation that is based on the relational data model; 2) a declarative logic programming language that is based on Datalog and supports recursion, aggregation, and negation; and 3) a framework for automatic and efficient differentiable reasoning that is based on the theory of provenance semirings. We evaluate Scallop on a suite of eight neurosymbolic applications from the literature. Our evaluation demonstrates that Scallop is capable of expressing algorithmic reasoning in diverse and challenging AI tasks, provides a succinct interface for machine learning programmers to integrate logical domain knowledge, and yields solutions that are comparable or superior to state-of-the-art models in terms of accuracy. Furthermore, Scallop's solutions outperform these models in aspects such as runtime and data efficiency, interpretability, and generalizability. 
    more » « less
  4. Many data processing systems allow SQL queries that calluser-defined functions (UDFs)written in conventional programming languages. While such SQL extensions provide convenience and flexibility to users, queries involving UDFs are not as efficient as their pure SQL counterparts that invoke SQL’s highly-optimized built-in functions. Motivated by this problem, we propose a new technique for translating SQL queries with UDFs to pure SQL expressions. Unlike prior work in this space, our method is not based on syntactic rewrite rules and can handle a much more general class of UDFs. At a high-level, our method is based on counterexample-guided inductive synthesis (CEGIS) but employs a novel compositional strategy that decomposes the synthesis task into simpler sub-problems. However, because there is no universal decomposition strategy that works for all UDFs, we propose a novellazy inductive synthesisapproach that generates a sequence of decompositions that correspond to increasingly harder inductive synthesis problems. Because most realistic UDF-to-SQL translation tasks are amenable to a fine-grained decomposition strategy, our lazy inductive synthesis method scales significantly better than traditional CEGIS. We have implemented our proposed technique in a tool called CLIS for optimizing Spark SQL programs containing Scala UDFs. To evaluate CLIS, we manually study 100 randomly selected UDFs and find that 63 of them can be expressed in pure SQL. Our evaluation on these 63 UDFs shows that CLIS can automatically synthesize equivalent SQL expressions in 92% of the cases and that it can solve 2.4× more benchmarks compared to a baseline that does not use our compositional approach. We also show that CLIS yields an average speed-up of 3.5× for individual UDFs and 1.3× to 3.1× in terms of end-to-end application performance. 
    more » « less
  5. Almost-sure termination is an important correctness property for probabilistic programs, and a number of program logics have been developed for establishing it. However, these logics have mostly been developed for first-order programs written in languages with specific syntactic patterns for looping. In this paper, we consider almost-sure termination for higher-order probabilistic programs with general references. This combination of features allows for recursion and looping to be encoded through a variety of patterns. Therefore, rather than developing proof rules for reasoning about particular recursion patterns, we instead propose an approach based on proving refinement between a higher-order program and a simpler probabilistic model, in such a way that the refinement preserves termination behavior. By proving a refinement, almost-sure termination behavior of the program can then be established by analyzing the simpler model. We present this approach in the form of Caliper, a higher-order separation logic for proving termination-preserving refinements. Caliper uses probabilistic couplings to carry out relational reasoning between a program and a model. To handle the range of recursion patterns found in higher-order programs, Caliper uses guarded recursion, in particular the principle of Löb induction. A technical novelty is that Caliper does not require the use of transfinite step indexing or other technical restrictions found in prior work on guarded recursion for termination-preservation refinement. We demonstrate the flexibility of this approach by proving almost-sure termination of several examples, including first-order loop constructs, a random list generator, treaps, and a sampler for Galton-Watson trees that uses higher-order store. All the results have been mechanized in the Coq proof assistant. 
    more » « less