Conceptual design is the foundational stage of a design process that translates ill-defined design problems into low-fidelity design concepts and prototypes through design search, creation, and integration. In this stage, product shape design is one of the most paramount aspects. When applying deep learning-based methods to product shape design, two major challenges exist: (1) design data exhibit in multiple modalities and (2) an increasing demand for creativity. With recent advances in deep learning of cross-modal tasks (DLCMTs), which can transfer one design modality to another, we see opportunities to develop artificial intelligence (AI) to assist the design of product shapes in a new paradigm. In this paper, we conduct a systematic review of the retrieval, generation, and manipulation methods for DLCMT that involve three cross-modal types: text-to-3D shape, text-to-sketch, and sketch-to-3D shape. The review identifies 50 articles from a pool of 1341 papers in the fields of computer graphics, computer vision, and engineering design. We review (1) state-of-the-art DLCMT methods that can be applied to product shape design and (2) identify the key challenges, such as lack of consideration of engineering performance in the early design phase that need to be addressed when applying DLCMT methods. In the end, we discuss the potential solutions to these challenges and propose a list of research questions that point to future directions of data-driven conceptual design.
more »
« less
MVCNN++: CAD Model Shape Classification and Retrieval using Multi-View Convolutional Neural Networks
Abstract Deep neural networks have shown promising success towards the classification and retrieval tasks for images and text data. While there have been several implementations of deep networks in the area of computer graphics, these algorithms do not translate easily across different datasets, especially for shapes used in product design and manufacturing domain. Unlike datasets used in the 3D shape classification and retrieval in the computer graphics domain, engineering level description of 3D models do not yield themselves to neat distinct classes. The current study looks at an improved form of the 3D shape deep learning algorithm for classification and retrieval through the use of techniques such as relaxed classification, use of prime angled camera angles for capturing feature detail and transfer learning for reducing the amount of data and processing time needed to train shape recognition algorithms. The proposed algorithm (MVCNN++) builds on top of multi-view convolutional neural network (MVCNN) algorithm, improving its efficacy for manufacturing part classification by enabling use of part metadata, yielding an improvement of almost 6% over the original version. With the explosive growth of 3D product models available in publicly available repositories, search and discovery of relevant models is critical to democratizing access to design models.
more »
« less
- Award ID(s):
- 1812687
- PAR ID:
- 10173548
- Date Published:
- Journal Name:
- Journal of Computing and Information Science in Engineering
- ISSN:
- 1530-9827
- Page Range / eLocation ID:
- 1 to 27
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Automated manufacturing feature recognition is a crucial link between computer-aided design and manufacturing, facilitating process selection and other downstream tasks in computer-aided process planning. While various methods such as graph-based, rule-based, and neural networks have been proposed for automatic feature recognition, they suffer from poor scalability or computational inefficiency. Recently, voxel-based convolutional neural networks have shown promise in solving these challenges but incur a tradeoff between computational cost and feature resolution. This paper investigates a computationally efficient sparse voxel-based convolutional neural network for manufacturing feature recognition, specifically, an octree-based sparse voxel convolutional neural network. This model is trained on a large-scale manufacturing feature dataset, and its performance is compared to a voxel-based feature recognition model (FeatureNet). The results indicate that the octree-based model yields higher feature recognition accuracy (99.5% on the test dataset) with 44% lower graphics processing unit (GPU) memory consumption than a voxel-based model of comparable resolution. In addition, increasing the resolution of the octree-based model enables recognition of finer manufacturing features. These results indicate that a sparse voxel-based convolutional neural network is a computationally efficient deep learning model for manufacturing feature recognition to enable process planning automation. Moreover, the sparse voxel-based neural network demonstrated comparable performance to a boundary representation-based feature recognition neural network, achieving similar accuracy in single-feature recognition without having access to the exact 3D shape descriptors.more » « less
-
Abstract Conceptual design is the foundational stage of a design process, translating ill-defined design problems to low-fidelity design concepts and prototypes. While deep learning approaches are widely applied in later design stages for design automation, we see fewer attempts in conceptual design for three reasons: 1) the data in this stage exhibit multiple modalities: natural language, sketches, and 3D shapes, and these modalities are challenging to represent in deep learning methods; 2) it requires knowledge from a larger source of inspiration instead of focusing on a single design task; and 3) it requires translating designers’ intent and feedback, and hence needs more interaction with designers and/or users. With recent advances in deep learning of cross-modal tasks (DLCMT) and the availability of large cross-modal datasets, we see opportunities to apply these learning methods to the conceptual design of product shapes. In this paper, we review 30 recent journal articles and conference papers across computer graphics, computer vision, and engineering design fields that involve DLCMT of three modalities: natural language, sketches, and 3D shapes. Based on the review, we identify the challenges and opportunities of utilizing DLCMT in 3D shape concepts generation, from which we propose a list of research questions pointing to future research directions.more » « less
-
Abstract Computer-aided Design for Manufacturing (DFM) systems play an essential role in reducing the time taken for product development by providing manufacturability feedback to the designer before the manufacturing phase. Traditionally, DFM rules are hand-crafted and used to accelerate the engineering product design process by integrating manufacturability analysis during design. Recently, the feasibility of using a machine learning-based DFM tool in intelligently applying the DFM rules have been studied. These tools use a voxelized representation of the design and then use a 3D-Convolutional Neural Network (3D-CNN), to provide manufacturability feedback. Although these frameworks work effectively, there are some limitations to the voxelized representation of the design. In this paper, we introduce a new representation of the computer-aided design (CAD) model using orthogonal distance fields (ODF). We provide a GPU-accelerated algorithm to convert standard boundary representation (B-rep) CAD models into ODF representation. Using the ODF representation, we build a machine learning framework, similar to earlier approaches, to create a machine learning-based DFM system to provide manufacturability feedback. As proof of concept, we apply this framework to assess the manufacturability of drilled holes. The framework has an accuracy of more than 84% correctly classifying the manufacturable and non-manufacturable models using the new representation.more » « less
-
Abstract Machine learning can be used to automate common or time-consuming engineering tasks for which sufficient data already exist. For instance, design repositories can be used to train deep learning algorithms to assess component manufacturability; however, methods to determine the suitability of a design repository for use with machine learning do not exist. We provide an initial investigation toward identifying such a method using “artificial” design repositories to experimentally test the extent to which altering properties of the dataset impacts the assessment precision and generalizability of neural networks trained on the data. For this experiment, we use a 3D convolutional neural network to estimate quantitative manufacturing metrics directly from voxel-based component geometries. Additive manufacturing (AM) is used as a case study because of the recent growth of AM-focused design repositories such as GrabCAD and Thingiverse that are readily accessible online. In this study, we focus only on material extrusion, the dominant consumer AM process, and investigate three AM build metrics: (1) part mass, (2) support material mass, and (3) build time. Additionally, we compare the convolutional neural network accuracy to that of a baseline multiple linear regression model. Our results suggest that training on design repositories with less standardized orientation and position resulted in more accurate trained neural networks and that orientation-dependent metrics were harder to estimate than orientation-independent metrics. Furthermore, the convolutional neural network was more accurate than the baseline linear regression model for all build metrics.more » « less
An official website of the United States government

