skip to main content

Title: Orthogonal Distance Fields Representation for Machine-Learning Based Manufacturability Analysis

Computer-aided Design for Manufacturing (DFM) systems play an essential role in reducing the time taken for product development by providing manufacturability feedback to the designer before the manufacturing phase. Traditionally, DFM rules are hand-crafted and used to accelerate the engineering product design process by integrating manufacturability analysis during design. Recently, the feasibility of using a machine learning-based DFM tool in intelligently applying the DFM rules have been studied. These tools use a voxelized representation of the design and then use a 3D-Convolutional Neural Network (3D-CNN), to provide manufacturability feedback. Although these frameworks work effectively, there are some limitations to the voxelized representation of the design. In this paper, we introduce a new representation of the computer-aided design (CAD) model using orthogonal distance fields (ODF). We provide a GPU-accelerated algorithm to convert standard boundary representation (B-rep) CAD models into ODF representation. Using the ODF representation, we build a machine learning framework, similar to earlier approaches, to create a machine learning-based DFM system to provide manufacturability feedback. As proof of concept, we apply this framework to assess the manufacturability of drilled holes. The framework has an accuracy of more than 84% correctly classifying the manufacturable and non-manufacturable models using the new more » representation.

« less
 ;  ;  ;  
Award ID(s):
Publication Date:
Journal Name:
International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE)
Sponsoring Org:
National Science Foundation
More Like this
  1. An ever-increasing number of industries are adopting additive manufacturing (AM), also known as 3D printing, to their production lifecycles for manufacturing parts. A computer aided design (CAD) model is used to manufacture the part. The capability for efficient search and retrieval of the CAD models from the database has become an essential need for designers and users. However, traditional search techniques perform poorly in the context of searching CAD designs. In this paper, we propose Fourier Fingerprint Search (FFS), a retrieval framework for 3D models that deduces and leverages critical shape characteristics for search. FFS introduces a novel search methodology that incorporates these characteristics and uses two advanced matching techniques that operate at different granularities and take into account unique patterns associated with each design. In addition, FFS supports both exact and partial matching in order to provide helpful and robust search results for any scenario. We investigate a diverse set of features and enhancements for search that allows for high adaptability in all situations, such as dividing shapes into smaller parts, surface interpolation, and two different types of rotation. We evaluate FFS using the FabWave CAD dataset with approximately 3000 manufacturing models with different configurations. Our experimental results demonstratemore »the efficiency and high accuracy of our approach for both exact and partial matching, rendering FFS a powerful framework for CAD model search.« less
  2. Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students. To encourage CAD programs to build in assistance to students, we used data generated from students using a free, open-source CAD software called Aladdin to demonstrate how student data combined with machine learning techniques can predict how well a particular student will perform in a design task. We challenged students to design a house that consumed zero net energy as part of an introductory engineering technology undergraduate course. Using data from 128 students, along with the scikit-learn Python machine learning library, we tested our models using both total counts of design actions and sequences of design actions as inputs. We found that our models using early design sequence actions are particularly valuable for prediction. Our logistic regression model achieved a >60% chance of predicting if a student would succeed in designing a zero netmore »energy house. Our results suggest that it would be feasible for Aladdin to provide useful feedback to students when they are approximately halfway through their design. Further improvements to these models could lead to earlier predictions and thus provide students feedback sooner to enhance their learning.« less
  3. 3D Convolutional Neural Networks (3D-CNN) have been used for object recognition based on the voxelized shape of an object. However, interpreting the decision making process of these 3D-CNNs is still an infeasible task. In this paper, we present a unique 3D-CNN based Gradient-weighted Class Activation Mapping method (3D-GradCAM) for visual explanations of the distinct local geometric features of interest within an object. To enable efficient learning of 3D geometries, we augment the voxel data with surface normals of the object boundary. We then train a 3D-CNN with this augmented data and identify the local features critical for decision-making using 3D GradCAM. An application of this feature identification framework is to recognize difficult-to-manufacture drilled hole features in a complex CAD geometry. The framework can be extended to identify difficult-to-manufacture features at multiple spatial scales leading to a real-time design for manufacturability decision support system.
  4. Abstract

    Additive manufacturing (AM) processes present designers with unique capabilities while imposing several process limitations. Designers must leverage the capabilities of AM — through opportunistic design for AM (DfAM) — and accommodate AM limitations — through restrictive DfAM — to successfully employ AM in engineering design. These opportunistic and restrictive DfAM techniques starkly contrast the traditional, limitation-based design for manufacturing techniques — the current standard for design for manufacturing (DfM). Therefore, designers must transition from a restrictive DfM mindset towards a ‘dual’ design mindset — using opportunistic and restrictive DfAM concepts. Designers’ prior experience, especially with a partial set of DfM and DfAM techniques could inhibit their ability to transition towards a dual DfAM approach. On the other hand, experienced designers’ auxiliary skills (e.g., with computer-aided design) could help them successfully use DfAM in their solutions. Researchers have investigated the influence of prior experience on designers’ use of DfAM tools in design; however, a majority of this work focuses on early-stage ideation. Little research has studied the influence of prior experience on designers’ DfAM use in the later design stages, especially in formal DfAM educational interventions, and we aim to explore this research gap. From our results, we see thatmore »experienced designers report higher baseline self-efficacy with restrictive DfAM but not with opportunistic DfAM. We also see that experienced designers demonstrate a greater use of certain DfAM concepts (e.g., part and assembly complexity) in their designs. These findings suggest that introducing designers to opportunistic DfAM early could help develop a dual design mindset; however, having more engineering experience might be necessary for them to implement this knowledge into their designs.

    « less
  5. Direct digital manufacturing (DDM) is the creation of a physical part directly from a computer-aided design (CAD) model with minimal process planning and is typically applied to additive manufacturing (AM) processes to fabricate complex geometry. AM is preferred for DDM because of its minimal user input requirements; as a result, users can focus on exploiting other advantages of AM, such as the creation of intricate mechanisms that require no assembly after fabrication. Such assembly free mechanisms can be created using DDM during a single build process. In contrast, subtractive manufacturing (SM) enables the creation of higher strength parts that do not suffer from the material anisotropy inherent in AM. However, process planning for SM is more difficult than it is for AM due to geometric constraints imposed by the machining process; thus, the application of SM to the fabrication of assembly free mechanisms is challenging. This research describes a voxel-based computer-aided manufacturing (CAM) system that enables direct digital subtractive manufacturing (DDSM) of an assembly free mechanism. Process planning for SM involves voxel-by-voxel removal of material in the same way that an AM process consists of layer-by-layer addition of material. The voxelized CAM system minimizes user input by automatically generating toolpathsmore »based on an analysis of accessible material to remove for a certain clearance in the mechanism's assembled state. The DDSM process is validated and compared to AM using case studies of the manufacture of two assembly free ball-in-socket mechanisms.« less