We propose a set of techniques to efficiently importance sample the derivatives of a wide range of Bidirectional Reflectance Distribution Function (BRDF) models. In differentiable rendering, BRDFs are replaced by their differential BRDF counterparts, which are real-valued and can have negative values. This leads to a new source of variance arising from their change in sign. Real-valued functions cannot be perfectly importance sampled by a positive-valued PDF, and the direct application of BRDF sampling leads to high variance. Previous attempts at antithetic sampling only addressed the derivative with the roughness parameter of isotropic microfacet BRDFs. Our work generalizes BRDF derivative sampling to anisotropic microfacet models, mixture BRDFs, Oren-Nayar, Hanrahan-Krueger, among other analytic BRDFs. Our method first decomposes the real-valued differential BRDF into a sum of single-signed functions, eliminating variance from a change in sign. Next, we importance sample each of the resulting single-signed functions separately. The first decomposition, positivization, partitions the real-valued function based on its sign, and is effective at variance reduction when applicable. However, it requires analytic knowledge of the roots of the differential BRDF, and for it to be analytically integrable too. Our key insight is that the single-signed functions can have overlapping support, which significantly broadens the ways we can decompose a real-valued function. Our product and mixture decompositions exploit this property, and they allow us to support several BRDF derivatives that positivization could not handle. For a wide variety of BRDF derivatives, our method significantly reduces the variance (up to 58× in some cases) at equal computation cost and enables better recovery of spatially varying textures through gradient-descent-based inverse rendering.
more »
« less
An Adaptive BRDF Fitting Metric
Abstract We propose a novel image‐driven fitting strategy for isotropic BRDFs. Whereas existing BRDF fitting methods minimize a cost function directly on the error between the fitted analytical BRDF and the measured isotropic BRDF samples, we also take into account the resulting material appearance in visualizations of the BRDF. This change of fitting paradigm improves the appearance reproduction fidelity, especially for analytical BRDF models that lack the expressiveness to reproduce the measured surface reflectance. We formulate BRDF fitting as a two‐stage process that first generates a series of candidate BRDF fits based only on the BRDF error with measured BRDF samples. Next, from these candidates, we select the BRDF fit that minimizes the visual error. We demonstrate qualitatively and quantitatively improved fits for the Cook‐Torrance and GGX microfacet BRDF models. Furthermore, we present an analysis of the BRDF fitting results, and show that the image‐driven isotropic BRDF fits generalize well to other light conditions, and that depending on the measured material, a different weighting of errors with respect to the measured BRDF is necessary.
more »
« less
- Award ID(s):
- 1909028
- PAR ID:
- 10173616
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Computer Graphics Forum
- Volume:
- 39
- Issue:
- 4
- ISSN:
- 0167-7055
- Page Range / eLocation ID:
- p. 59-74
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT This paper provides a comprehensive overview of how fitting of baryon acoustic oscillations (BAO) is carried out within the upcoming Dark Energy Spectroscopic Instrument’s (DESI) 2024 results using its DR1 data set, and the associated systematic error budget from theory and modelling of the BAO. We derive new results showing how non-linearities in the clustering of galaxies can cause potential biases in measurements of the isotropic ($$\alpha _{\mathrm{iso}}$$) and anisotropic ($$\alpha _{\mathrm{ap}}$$) BAO distance scales, and how these can be effectively removed with an appropriate choice of reconstruction algorithm. We then demonstrate how theory leads to a clear choice for how to model the BAO and develop, implement, and validate a new model for the remaining smooth-broad-band (i.e. without BAO) component of the galaxy clustering. Finally, we explore the impact of all remaining modelling choices on the BAO constraints from DESI using a suite of high-precision simulations, arriving at a set of best practices for DESI BAO fits, and an associated theory and modelling systematic error. Overall, our results demonstrate the remarkable robustness of the BAO to all our modelling choices and motivate a combined theory and modelling systematic error contribution to the post-reconstruction DESI BAO measurements of no more than 0.1 per cent (0.2 per cent) for its isotropic (anisotropic) distance measurements. We expect the theory and best practices laid out to here to be applicable to other BAO experiments in the era of DESI and beyond.more » « less
-
Summary A variety of demographic statistical models exist for studying population dynamics when individuals can be tracked over time. In cases where data are missing due to imperfect detection of individuals, the associated measurement error can be accommodated under certain study designs (e.g. those that involve multiple surveys or replication). However, the interaction of the measurement error and the underlying dynamic process can complicate the implementation of statistical agent‐based models (ABMs) for population demography. In a Bayesian setting, traditional computational algorithms for fitting hierarchical demographic models can be prohibitively cumbersome to construct. Thus, we discuss a variety of approaches for fitting statistical ABMs to data and demonstrate how to use multi‐stage recursive Bayesian computing and statistical emulators to fit models in such a way that alleviates the need to have analytical knowledge of the ABM likelihood. Using two examples, a demographic model for survival and a compartment model for COVID‐19, we illustrate statistical procedures for implementing ABMs. The approaches we describe are intuitive and accessible for practitioners and can be parallelised easily for additional computational efficiency.more » « less
-
Abstract Impedance-based structural health monitoring (SHM) is recognized as a non-intrusive, highly sensitive, and model-independent SHM solution that is readily applicable to complex structures. This SHM method relies on analyzing the electromechanical impedance (EMI) signature of the structure under test over the time span of its operation. Changes in the EMI signature, compared to a baseline measured at the healthy state of the structure, often indicate damage. This method has successfully been applied to assess the integrity of numerous civil, aerospace, and mechanical components and structures. However, EMI sensitivity to environmental conditions, the temperature, in particular, has been an ongoing challenge facing the wide adoption of this method. Temperature-induced variation in EMI signatures can be misinterpreted as damage, leading to false positives, or may overshadow the effects of incipient damage in the structure. In this paper, a new method for temperature compensation of EMI signature is presented. Data-driven dynamic models are first developed by fitting EMI signatures measured at various temperatures using the Vector Fitting algorithm. Once these models are developed, the dependence of model parameters on temperature is established. A parametric data-driven model is then derived with temperature as a parameter. This allows for EMI signatures to be calculated at any desired temperature. The capabilities of this new temperature compensation method are demonstrated on aluminum samples, where EMI signatures are measured at various temperatures. The developed method is found to be capable of temperature compensation of EMI signatures at a broad frequency range.more » « less
-
Abstract Low-collisionality plasma in a magnetic field generically develops anisotropy in its distribution function with respect to the magnetic field direction. Motivated by the application to radiation from accretion flows and jets, we explore the effect of temperature anisotropy on synchrotron emission. We derive analytically and provide numerical fits for the polarized synchrotron emission and absorption coefficients for a relativistic bi-Maxwellian plasma (we do not consider Faraday conversion/rotation). Temperature anisotropy can significantly change how the synchrotron emission and absorption coefficients depend on observing angle with respect to the magnetic field. The emitted linear polarization fraction does not depend strongly on anisotropy, while the emitted circular polarization does. We apply our results to black hole imaging of Sgr A* and M87* by ray tracing a GRMHD simulation and assuming that the plasma temperature anisotropy is set by the thresholds of kinetic-scale anisotropy-driven instabilities. We find that the azimuthal asymmetry of the 230 GHz images can change by up to a factor of 3, accentuating (T⊥>T∥) or counteracting (T⊥<T∥) the image asymmetry produced by Doppler beaming. This can change the physical inferences from observations relative to models with an isotropic distribution function, e.g., by allowing for larger inclination between the line of sight and spin direction in Sgr A*. The observed image diameter and the size of the black hole shadow can also vary significantly due to plasma temperature anisotropy. We describe how the anisotropy of the plasma can affect future multifrequency and photon ring observations. We also calculate kinetic anisotropy-driven instabilities (mirror, whistler, and firehose) for relativistically hot plasmas.more » « less
An official website of the United States government
