skip to main content


This content will become publicly available on June 30, 2025

Title: Importance Sampling BRDF Derivatives

We propose a set of techniques to efficiently importance sample the derivatives of a wide range of Bidirectional Reflectance Distribution Function (BRDF) models. In differentiable rendering, BRDFs are replaced by their differential BRDF counterparts, which are real-valued and can have negative values. This leads to a new source of variance arising from their change in sign. Real-valued functions cannot be perfectly importance sampled by a positive-valued PDF, and the direct application of BRDF sampling leads to high variance. Previous attempts at antithetic sampling only addressed the derivative with the roughness parameter of isotropic microfacet BRDFs. Our work generalizes BRDF derivative sampling to anisotropic microfacet models, mixture BRDFs, Oren-Nayar, Hanrahan-Krueger, among other analytic BRDFs.

Our method first decomposes the real-valued differential BRDF into a sum of single-signed functions, eliminating variance from a change in sign. Next, we importance sample each of the resulting single-signed functions separately. The first decomposition, positivization, partitions the real-valued function based on its sign, and is effective at variance reduction when applicable. However, it requires analytic knowledge of the roots of the differential BRDF, and for it to be analytically integrable too. Our key insight is that the single-signed functions can have overlapping support, which significantly broadens the ways we can decompose a real-valued function. Our product and mixture decompositions exploit this property, and they allow us to support several BRDF derivatives that positivization could not handle. For a wide variety of BRDF derivatives, our method significantly reduces the variance (up to 58× in some cases) at equal computation cost and enables better recovery of spatially varying textures through gradient-descent-based inverse rendering.

 
more » « less
Award ID(s):
2105806 2212085
NSF-PAR ID:
10502620
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
43
Issue:
3
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a suite of path sampling methods for differentiable rendering of scene parameters that do not induce visibility-driven discontinuities, such as BRDF parameters. We begin by deriving a path integral formulation for differentiable rendering of such parameters, which we then use to derive methods that importance sample paths according to this formulation. Our methods are analogous to path tracing and path tracing with next event estimation for primal rendering, have linear complexity, and can be implemented efficiently using path replay backpropagation. Our methods readily benefit from differential BRDF sampling routines, and can be further enhanced using multiple importance sampling and a loss-aware pixel-space adaptive sampling procedure tailored to our path integral formulation. We show experimentally that our methods reduce variance in rendered gradients by potentially orders of magnitude, and thus help accelerate inverse rendering optimization of BRDF parameters. 
    more » « less
  2. In this article, we introduce a compact representation for measured BRDFs by leveraging Neural Processes (NPs). Unlike prior methods that express those BRDFs as discrete high-dimensional matrices or tensors, our technique considers measured BRDFs as continuous functions and works in corresponding function spaces . Specifically, provided the evaluations of a set of BRDFs, such as ones in MERL and EPFL datasets, our method learns a low-dimensional latent space as well as a few neural networks to encode and decode these measured BRDFs or new BRDFs into and from this space in a non-linear fashion. Leveraging this latent space and the flexibility offered by the NPs formulation, our encoded BRDFs are highly compact and offer a level of accuracy better than prior methods. We demonstrate the practical usefulness of our approach via two important applications, BRDF compression and editing. Additionally, we design two alternative post-trained decoders to, respectively, achieve better compression ratio for individual BRDFs and enable importance sampling of BRDFs. 
    more » « less
  3. null (Ed.)
    We present PhySG, an end-to-end inverse rendering pipeline that includes a fully differentiable renderer, and can reconstruct geometry, materials, and illumination from scratch from a set of images. Our framework represents specular BRDFs and environmental illumination using mix- tures of spherical Gaussians, and represents geometry as a signed distance function parameterized as a Multi-Layer Perceptron. The use of spherical Gaussians allows us to efficiently solve for approximate light transport, and our method works on scenes with challenging non-Lambertian reflectance captured under natural, static illumination. We demonstrate, with both synthetic and real data, that our re- constructions not only enable rendering of novel viewpoints, but also physics-based appearance editing of materials and illumination. 
    more » « less
  4. Abstract

    We propose a novel image‐driven fitting strategy for isotropic BRDFs. Whereas existing BRDF fitting methods minimize a cost function directly on the error between the fitted analytical BRDF and the measured isotropic BRDF samples, we also take into account the resulting material appearance in visualizations of the BRDF. This change of fitting paradigm improves the appearance reproduction fidelity, especially for analytical BRDF models that lack the expressiveness to reproduce the measured surface reflectance. We formulate BRDF fitting as a two‐stage process that first generates a series of candidate BRDF fits based only on the BRDF error with measured BRDF samples. Next, from these candidates, we select the BRDF fit that minimizes the visual error. We demonstrate qualitatively and quantitatively improved fits for the Cook‐Torrance and GGX microfacet BRDF models. Furthermore, we present an analysis of the BRDF fitting results, and show that the image‐driven isotropic BRDF fits generalize well to other light conditions, and that depending on the measured material, a different weighting of errors with respect to the measured BRDF is necessary.

     
    more » « less
  5. Abstract

    To increase diversity and realism, surface bidirectional scattering distribution functions (BSDFs) are often modelled as consisting of multiple layers, but accurately evaluating layered BSDFs while accounting for all light transport paths is a challenging problem. Recently, Guoet al. [GHZ18] proposed an accurate and general position‐free Monte Carlo method, but this method introduces variance that leads to longer render time compared to non‐stochastic layered models. We improve the previous work by presenting two new sampling strategies,pair‐product samplingandmultiple‐product sampling. Our new methods better take advantage of the layered structure and reduce variance compared to the conventional approach of sequentially sampling one BSDF at a time. Ourpair‐product samplingstrategy importance samples the product of two BSDFs from a pair of adjacent layers. We further generalize this tomultiple‐product sampling, which importance samples the product of a chain of three or more BSDFs. In order to compute these products, we developed a new approximate Gaussian representation of individual layer BSDFs. This representation incorporates spatially varying material properties as parameters so that our techniques can support an arbitrary number of textured layers. Compared to previous Monte Carlo layering approaches, our results demonstrate substantial variance reduction in rendering isotropic layered surfaces.

     
    more » « less