skip to main content


Title: Dissolved organic phosphorus (DOP) distributions in the Eastern Indian Ocean and subtropical South Pacific Ocean
Significant rates of export production and nitrogen fixation occur in oligotrophic gyres in spite of low inorganic nutrient concentrations in surface waters. Prior work suggests that dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) are important nutrient sources when inorganic nutrients are scarce. In particular, DOP has been shown to be an important P source for diazotrophs, which may be better suited to using low concentrations of organic vs. inorganic P. Prior modeling work has also suggested that DOP is important for supporting export production in oligotrophic gyres. However, validation of such models is limited by the number of upper ocean DOP concentration measurements, especially in the South Pacific and Indian Oceans. Here, we present measurements of DOP concentration from the 2016 GO-SHIP I08S and I09N meridional transect in Eastern Indian Ocean, and DON and DOP concentration measurements from the 2017 GO-SHIP P06 zonal transect in the subtropical South Pacific Ocean. Together with DOC and DON concentration measurements from prior occupations of the same GO-SHIP lines we evaluated changes in euphotic zone DOC:DON:DOP stoichiometry. Stoichiometry changes across these two transects are used to infer regions of preferential DON and/or DOP production and consumption. Specifically, north of 36 S in the Indian Ocean an increase in DOC:DON and DOC:DOP concentration ratios, from 11:1 to 14:1 and 118:1 to 190:1, respectively, are observed. Similarly, west of 136 W in the South Pacific Ocean significant increases in DOC:DOP and DON:DOP concentration ratios are observed, from 224:1 to 398:1 and 21:1 to 39:1, respectively. These stoichiometric shifts in upper ocean DOC:DON:DOP concentration ratios are considered in the context of ocean circulation, especially upwelling patterns in the Indian and eastern Pacific Oceans, as well as prior observations of the distribution of nitrogen fixation, especially in the western tropical South Pacific.  more » « less
Award ID(s):
1829797
NSF-PAR ID:
10173813
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2020 Ocean Sciences Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dissolved organic nitrogen (DON) is the dominant form of bioavailable nitrogen in the euphotic zone of subtropical gyres, where nitrate (NO3-) concentrations are low. However, the spatial distribution of DON production and consumption in the surface ocean remains poorly resolved due to the relatively narrow range in euphotic zone DON concentrations. Recently, the stable isotopic composition (d15N) of DON has been used to identify DON production and consumption in the surface ocean, making isotopic measurements a more sensitive indicator of DON cycling than concentration measurements alone. Here we report DON concentration and d15N measurements in the upper ~300 m from a zonal transect along ~30˚S in the South Pacific (GO-SHIP P06-2017), including samples in the Western South Pacific (154˚E-170˚W), in the oligotrophic South Pacific Subtropical Gyre (110˚W -170˚W), and overlying the Oxygen Deficient Zone (ODZ) in the east (78˚W-110˚W). We observed small variations in surface DON concentrations. Surface DON in Western South Pacific, oligotrophic South Pacific Subtropical Gyre and above the ODZ are 4.6±1.0 µM, 4.3±0.7 µM, and 4.8±0.5 µM, respectively. d15N of DON in the euphotic zone is lower in the west and higher in the east, consistent with distributions of nitrogen fixation and denitrification, respectively, in the South Pacific. Similar decreasing trend in DON d15N in the euphotic zone and subsurface nitrate d15N was observed from the east to the west in the South Pacific, suggesting the d15N in subsurface nitrate could be imprinted in the DON d15N in the euphotic zone. Low surface ocean DON d15N in the Western South Pacific (2.4±1.8 ‰) and oligotrophic South Pacific Subtropical Gyre (2.6±1.6 ‰) compared with surface ocean DON d15N above ODZ (5.4±2.3 ‰) infer significant low-d15N nitrogen is added to the western South Pacific and oligotrophic South Pacific Subtropical Gyre, potentially from N2 fixation. Additionally, high DON d15N at ~180˚ was consistent with entrainment of subsurface NO3- into surface waters due to shallow bathymetry. Together, these observations suggest that DON production and consumption processes operate on timescales adequately fast to produce isotopic gradients across the South Pacific. Comparisons of surface ocean DON d15N with subsurface nitrate d15N constrain the locations and timescales of these processes. 
    more » « less
  2. null (Ed.)
    Dissolved organic phosphorus (DOP) has a dual role in the surface ocean as both a product of primary production and as an organic nutrient fueling primary production and nitrogen Fixation, especially in oligotrophic gyres. Though poorly constrained, understanding the geographic distribution and environmental controls of surface ocean DOP concentration is critical to estimating distributions and rates of primary production and nitrogen Fixation in the global ocean. Here we pair DOP concentration measurements with a metric of phosphate (PO43-) stress (P*), satellite-based chlorophyll a concentrations, and iron stress estimates to explore their relationship with upper 50 m DOP stocks. Our results show that PO43- and iron stress work together to control surface DOP concentrations at basin scales. SpeciFcally, upper 50 m DOP stocks decrease with increasing phosphate stress, while alleviated iron stress leads to either surface DOP accumulation or loss depending on PO43- availability. Our work suggests an interdependence between DOP concentration, inorganic nutrient ratios, and iron availability, and establishes a predictive framework for DOP distributions in the global surface ocean. 
    more » « less
  3. Abstract

    Surface ocean marine dissolved organic matter (DOM) serves as an important reservoir of carbon (C), nitrogen (N), and phosphorus (P) in the global ocean, and is produced and consumed by both autotrophic and heterotrophic communities. While prior work has described distributions of dissolved organic carbon (DOC) and nitrogen (DON) concentrations, our understanding of DOC:DON:DOP stoichiometry in the global surface ocean has been limited by the availability of DOP concentration measurements. Here, we estimate mean surface ocean bulk and semi‐labile DOC:DON:DOP stoichiometry in biogeochemically and geographically defined regions using newly available marine DOM concentration databases. Global mean surface ocean bulk (C:N:P = 387:26:1) and semi‐labile (C:N:P = 179:20:1) DOM stoichiometries are higher than Redfield stoichiometry, with semi‐labile DOM stoichiometry similar to that of global mean surface ocean particulate organic matter (C:N:P = 160:21:1) reported in a recent compilation. DOM stoichiometry varies across ocean basins, ranging from 251:17:1 to 638:43:1 for bulk and 83:15:1 to 414:49:1 for semi‐labile DOM C:N:P, respectively. Surface ocean DOP concentration exhibits larger relative changes than DOC and DON, driving surface ocean gradients in DOC:DON:DOP stoichiometry. Inferred autotrophic consumption of DOP helps explain intra‐ and inter‐basin patterns of marine DOM C:N:P stoichiometry, with regional patterns of water column denitrification and iron supply influencing the biogeochemical conditions favoring DOP use as an organic nutrient. Specifically, surface ocean marine DOM exhibits increasingly P‐depleted stoichiometries from east to west in the Pacific and from south to north in the Atlantic, consistent with patterns of increasing P stress and alleviated iron stress.

     
    more » « less
  4. Abstract Dissolved organic phosphorus (DOP) concentration distributions in the global surface ocean inform our understanding of marine biogeochemical processes such as nitrogen fixation and primary production. The spatial distribution of DOP concentrations in the surface ocean reflect production by primary producers and consumption as an organic nutrient by phytoplankton including diazotrophs and other microbes, as well as other loss processes such as photolysis. Compared to dissolved organic carbon and nitrogen, however, relatively few marine DOP concentration measurements have been made, largely due to the lack of automated analysis techniques. Here we present a database of marine DOP concentration measurements (DOPv2021) that includes new (n = 730) and previously published (n = 3140) observations made over the last ~30 years (1990–2021), including 1751 observations in the upper 50 m. This dataset encompasses observations from all major ocean basins including the poorly represented Indian, South Pacific, and Southern Oceans and provides insight into spatial distributions of DOP in the ocean. It is also valuable for researchers who work on marine primary production and nitrogen fixation. 
    more » « less
  5. The Pacific Ocean constitutes about half of the global oceans and thus microbial processes in this ocean have a large impact on global elemental cycles. Despite several intensely studied regions large areas are still greatly understudied regarding microbial activities, organic matter cycling and biogeography. Refined information about these features is most important to better understand the significance of this ocean for global biogeochemical and elemental cycles. Therefore we investigated a suite of microbial and geochemical variables along a transect from the subantarctic to the subarctic Pacific in the upper 200 m of the water column. The aim was to quantify rates of organic matter processing, identify potential controlling factors and prokaryotic key players. The assessed variables included abundance of heterotrophic prokaryotes and cyanobacteria, heterotrophic prokaryotic production (HPP), turnover rate constants of amino acids, glucose, and acetate, leucine aminopeptidase and β-glucosidase activities, and the composition of the bacterial community by fluorescence in situ hybridization (FISH). The additional quantification of nitrate, dissolved amino acids and carbohydrates, chlorophyll a , particulate organic carbon and nitrogen (POC, PON) provided a rich environmental context. The oligotrophic gyres exhibited the lowest prokaryotic abundances, rates of HPP and substrate turnover. Low nucleic acid prokaryotes dominated in these gyres, whereas in temperate and subpolar regions further north and south, high nucleic acid prokaryotes dominated. Turnover rate constants of glucose and acetate, as well as leucine aminopeptidase activity, increased from (sub)tropical toward the subpolar regions. In contrast, HPP and bulk growth rates were highest near the equatorial upwelling and lowest in the central gyres and subpolar regions. The SAR11 clade, the Roseobacter group and Flavobacteria constituted the majority of the prokaryotic communities. Vertical profiles of the biogeochemical and microbial variables markedly differed among the different regions and showed close covariations of the microbial variables and chlorophyll a , POC and PON. The results show that hydrographic, microbial, and biogeochemical properties exhibited distinct patterns reflecting the biogeographic provinces along the transect. The microbial variables assessed contribute to a better and refined understanding of the scales of microbial organic matter processing in large areas of the epipelagic Pacific beyond its well-studied regions. 
    more » « less