Abstract Dissolved organic nitrogen (DON) is the dominant form of fixed nitrogen in most low and middle latitude ocean surface waters. Here, we report measurements of DON isotopic composition (δ15N) from the west South China Sea (SCS), with the goal of providing new insight into DON cycling. The concentration of DON in the surface ocean is correlated (r = 0.70,p < 0.0001) with chlorophyllaconcentration, indicating DON production in these surface waters. The concentration and δ15N of DON fall in a relatively narrow range in the surface ocean (4.6 ± 0.1 μM and 4.3 ± 0.2‰ vs. air, respectively; ±SD), similar to other ocean regions. The mean DON δ15N above 50 m (4.5 ± 0.3‰) is similar to the δ15N of nitrate in the “shallow subsurface” (i.e., immediately below the euphotic zone; 4.6 ± 0.2‰) but is higher than the δ15N of suspended particles in the surface ocean (~2.3‰). This set of isotopic relationships has been observed previously (e.g., in the oligotrophic North Atlantic and North Pacific) and can be explained by the cycling of N between particulate organic nitrogen (PON), DON, and ammonium, in which an isotope effect associated with DON degradation preferentially concentrates15N in DON. Consistent with this view, a negative correlation (r = 0.70) between the concentration and the δ15N of DON is observed in the upper 75 m, suggesting an isotope effect of ~4.9 ± 0.4‰ for DON degradation. Comparing the DON δ15N data from the SCS with other regions, we find that the δ15N difference between euphotic zone DON and shallow subsurface nitrate δ15N (Δδ15N(DON‐NO3)) rises from ocean regions of inferred net DON production to regions of net DON consumption, with the SCS representing an intermediate case. 
                        more » 
                        « less   
                    
                            
                            Dissolved Organic Nitrogen Concentration and d15N Distribution along a Zonal Transect in the South Pacific
                        
                    
    
            Dissolved organic nitrogen (DON) is the dominant form of bioavailable nitrogen in the euphotic zone of subtropical gyres, where nitrate (NO3-) concentrations are low. However, the spatial distribution of DON production and consumption in the surface ocean remains poorly resolved due to the relatively narrow range in euphotic zone DON concentrations. Recently, the stable isotopic composition (d15N) of DON has been used to identify DON production and consumption in the surface ocean, making isotopic measurements a more sensitive indicator of DON cycling than concentration measurements alone. Here we report DON concentration and d15N measurements in the upper ~300 m from a zonal transect along ~30˚S in the South Pacific (GO-SHIP P06-2017), including samples in the Western South Pacific (154˚E-170˚W), in the oligotrophic South Pacific Subtropical Gyre (110˚W -170˚W), and overlying the Oxygen Deficient Zone (ODZ) in the east (78˚W-110˚W). We observed small variations in surface DON concentrations. Surface DON in Western South Pacific, oligotrophic South Pacific Subtropical Gyre and above the ODZ are 4.6±1.0 µM, 4.3±0.7 µM, and 4.8±0.5 µM, respectively. d15N of DON in the euphotic zone is lower in the west and higher in the east, consistent with distributions of nitrogen fixation and denitrification, respectively, in the South Pacific. Similar decreasing trend in DON d15N in the euphotic zone and subsurface nitrate d15N was observed from the east to the west in the South Pacific, suggesting the d15N in subsurface nitrate could be imprinted in the DON d15N in the euphotic zone. Low surface ocean DON d15N in the Western South Pacific (2.4±1.8 ‰) and oligotrophic South Pacific Subtropical Gyre (2.6±1.6 ‰) compared with surface ocean DON d15N above ODZ (5.4±2.3 ‰) infer significant low-d15N nitrogen is added to the western South Pacific and oligotrophic South Pacific Subtropical Gyre, potentially from N2 fixation. Additionally, high DON d15N at ~180˚ was consistent with entrainment of subsurface NO3- into surface waters due to shallow bathymetry. Together, these observations suggest that DON production and consumption processes operate on timescales adequately fast to produce isotopic gradients across the South Pacific. Comparisons of surface ocean DON d15N with subsurface nitrate d15N constrain the locations and timescales of these processes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1829797
- PAR ID:
- 10353760
- Date Published:
- Journal Name:
- 2022 Ocean Sciences Meeting
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Significant rates of export production and nitrogen fixation occur in oligotrophic gyres in spite of low inorganic nutrient concentrations in surface waters. Prior work suggests that dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) are important nutrient sources when inorganic nutrients are scarce. In particular, DOP has been shown to be an important P source for diazotrophs, which may be better suited to using low concentrations of organic vs. inorganic P. Prior modeling work has also suggested that DOP is important for supporting export production in oligotrophic gyres. However, validation of such models is limited by the number of upper ocean DOP concentration measurements, especially in the South Pacific and Indian Oceans. Here, we present measurements of DOP concentration from the 2016 GO-SHIP I08S and I09N meridional transect in Eastern Indian Ocean, and DON and DOP concentration measurements from the 2017 GO-SHIP P06 zonal transect in the subtropical South Pacific Ocean. Together with DOC and DON concentration measurements from prior occupations of the same GO-SHIP lines we evaluated changes in euphotic zone DOC:DON:DOP stoichiometry. Stoichiometry changes across these two transects are used to infer regions of preferential DON and/or DOP production and consumption. Specifically, north of 36 S in the Indian Ocean an increase in DOC:DON and DOC:DOP concentration ratios, from 11:1 to 14:1 and 118:1 to 190:1, respectively, are observed. Similarly, west of 136 W in the South Pacific Ocean significant increases in DOC:DOP and DON:DOP concentration ratios are observed, from 224:1 to 398:1 and 21:1 to 39:1, respectively. These stoichiometric shifts in upper ocean DOC:DON:DOP concentration ratios are considered in the context of ocean circulation, especially upwelling patterns in the Indian and eastern Pacific Oceans, as well as prior observations of the distribution of nitrogen fixation, especially in the western tropical South Pacific.more » « less
- 
            The western subtropical South Pacific (WSSP) has recently been found to support high rates of di-nitrogen (N2) fixation in association with shallow hydrothermal iron fluxes. While previous 15N2 uptake and short-term d15N budgets have found that high rates of N2 fixation contribute significantly to export production, no longer-term evaluations of N2 fixation’s role in supporting the regional ecosystem were available. Here we present results of an annual d15N budget using the d15N of sinking particles captured in a moored sediment trap deployed at 1000 m from Nov 2019 - Nov 2020. We compare the d15N of the particles collected over this annual cycle with the d15N of subsurface nitrate to evaluate the seasonal and annual importance of N2 fixation for supporting export production. The results indicate that N2 fixation supported up to ~20% of annual export and that N2 fixation was most important during the summer. Notably, the d15N of subsurface nitrate at the trap station was low, 2 to 3 per mil compared to stations further from the vents. We also present some of the region’s first dissolved organic nitrogen (DON) d15N data. The DON samples collected in Nov 2019 and Nov 2020 show similar DON concentrations and d15N between years. However, while DON concentrations in the WSSP, 5 +/- 1 uM, were similar to the eastern tropical South Pacific (ETSP), the d15N of DON in the upper 100 m in the WSSP was between 2 to 4 per mil, which is lower than the ETSP, where DON d15N was between 4 to 6 per mil. Together, the results of the annual d15N budget as well as the low-d15N DON provide a longer-term perspective on the significance of N2 fixation in the WSSP. Additionally, the results suggest that N2 fixation in the WSSP introduces significant low-d15N N to the ocean, offsetting the elevated d15N generated in the oxygen deficient zones of the eastern tropical Pacific.more » « less
- 
            Abstract We examined the nitrogen (N) biogeochemistry of adjacent cyclonic and anticyclonic eddies near Hawai'i in the North Pacific Subtropical Gyre (NPSG) and explored mechanisms that sustain productivity in the cyclone after the initial intensification stage. The top of the nutricline was uplifted into the euphotic zone in the cyclone and depressed in the anticyclone. Subsurface nutrient concentrations and apparent oxygen utilization at the cyclone's inner periphery were higher than expected from isopycnal displacement, suggesting that shallow remineralization of organic material generated excess nutrients in the subsurface. The excess nutrients may provide a supply of subsurface nutrients to sustain productivity in maturing eddies. The shallow remineralization also raises questions regarding the extent to which cyclonic eddies promote deep carbon sequestration in subtropical gyres such as the NPSG. An upward increase in nitrate15N/14N isotope ratios below the euphotic zone, indicative of partial nitrate assimilation, coincided with negative preformed nutrients—potentially signaling heterotrophic bacterial consumption of carbon‐rich (nitrogen‐poor) organic material. The15N/14N of material collected in shallow sediment traps was significantly higher in the cyclone than in the anticyclone and showed correspondence to the15N/14N ratio of the nitrate supply, which is acutely sensitive to sea level anomaly in the region. A number of approaches were applied to estimate the contribution of N2fixation to export production. Results among approaches were inconsistent, which we attribute to non‐steady state conditions during our observation period.more » « less
- 
            Abstract The unicellular diazotrophic cyanobacterium Crocosphaera contributes significantly to fixed nitrogen inputs in the oligotrophic ocean. In the western tropical South Pacific Ocean (WTSP), these diazotrophs abound thanks to the phosphorus-rich waters provided by the South Equatorial Current, and iron provided aeolian and subsurface volcanic activity. East of the WTSP, the South Pacific Gyre (SPG) harbors the most oligotrophic and transparent waters of the world's oceans, where only heterotrophic diazotrophs have been reported before. Here, in the SPG, we detected unexpected accumulation of Crocosphaera at 50 m with peak abundances of 5.26 × 105 nifH gene copies l–1. The abundance of Crocosphaera at 50 m was in the same order of magnitude as those detected westwards in the WTSP and represented 100% of volumetric N2 fixation rates. This accumulation at 50 m was likely due to a deeper penetration of UV light in the clear waters of the SPG being detrimental for Crocosphaera growth and N2 fixation activity. Nutrient and trace metal addition experiments did not induce any significant changes in N2 fixation or Crocosphaera abundance, indicating that this population was not limited by the resources tested and could develop in high numbers despite the oligotrophic conditions. Our findings indicate that the distribution of Crocosphaera can extend into subtropical gyres and further understanding of their controlling factors is needed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    