skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Atomic View of Cation Diffusion Pathways from Single‐Crystal Topochemical Transformations
Abstract The diffusion pathways of Li‐ions as they traverse cathode structures in the course of insertion reactions underpin many questions fundamental to the functionality of Li‐ion batteries. Much current knowledge derives from computational models or the imaging of lithiation behavior at larger length scales; however, it remains difficult to experimentally image Li‐ion diffusion at the atomistic level. Here, by using topochemical Li‐ion insertion and extraction to induce single‐crystal‐to‐single‐crystal transformations in a tunnel‐structured V2O5polymorph, coupled with operando powder X‐ray diffraction, we leverage single‐crystal X‐ray diffraction to identify the sequence of lattice interstitial sites preferred by Li‐ions to high depths of discharge, and use electron density maps to create a snapshot of ion diffusion in a metastable phase. Our methods enable the atomistic imaging of Li‐ions in this cathode material in kinetic states and provide an experimentally validated angstrom‐level 3D picture of atomic pathways thus far only conjectured through DFT calculations.  more » « less
Award ID(s):
1809866
PAR ID:
10173840
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
38
ISSN:
1433-7851
Page Range / eLocation ID:
p. 16385-16392
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Substantial improvements in cycle life, rate performance, accessible voltage, and reversible capacity are required to realize the promise of Li-ion batteries in full measure. Here, we have examined insertion electrodes of the same composition (V 2 O 5 ) prepared according to the same electrode specifications and comprising particles with similar dimensions and geometries that differ only in terms of their atomic connectivity and crystal structure, specifically two-dimensional (2D) layered α-V 2 O 5 that crystallizes in an orthorhombic space group and one-dimensional (1D) tunnel-structured ζ-V 2 O 5 crystallized in a monoclinic space group. By using particles of similar dimensions, we have disentangled the role of specific structural motifs and atomistic diffusion pathways in affecting electrochemical performance by mapping the dynamical evolution of lithiation-induced structural modifications using ex situ scanning transmission X-ray microscopy, operando synchrotron X-ray diffraction measurements, and phase-field modeling. We find the operation of sharply divergent mechanisms to accommodate increasing concentrations of Li-ions: a series of distortive phase transformations that result in puckering and expansion of interlayer spacing in layered α-V 2 O 5 , as compared with cation reordering along interstitial sites in tunnel-structured ζ-V 2 O 5 . By alleviating distortive phase transformations, the ζ-V 2 O 5 cathode shows reduced voltage hysteresis, increased Li-ion diffusivity, alleviation of stress gradients, and improved capacity retention. The findings demonstrate that alternative lithiation mechanisms can be accessed in metastable compounds by dint of their reconfigured atomic connectivity and can unlock substantially improved electrochemical performance not accessible in the thermodynamically stable phase. 
    more » « less
  2. Abstract New acceptor‐type graphite intercalation compounds (GICs) offer candidates of cathode materials for dual‐ion batteries (DIBs), where superhalides represent the emerging anion charge carriers for such batteries. Here, the reversible insertion of [LiCl2]into graphite from an aqueous deep eutectic solvent electrolyte of 20mLiCl+20mcholine chloride is reported. [LiCl2]is the primary anion species in this electrolyte as revealed by the femtosecond stimulated Raman spectroscopy results, particularly through the rarely observed H–O–H bending mode. The insertion of Li–Cl anionic species is suggested by7Li magic angle spinning nuclear magnetic resonance results that describe a unique chemical environment of Li+ions with electron donors around.2H nuclear magnetic resonance results suggest that water molecules are co‐inserted into graphite. Density functional theory calculations reveal that the anionic insertion of hydrated [LiCl2]takes place at a lower potential, being more favorable. X‐ray diffraction and the Raman results show that the insertion of [LiCl2]creates turbostratic structure in graphite instead of forming long‐range ordered GICs. The storage of [LiCl2]in graphite as a cathode for DIBs offers a capacity of 114 mAh g−1that is stable over 440 cycles. 
    more » « less
  3. Abstract Localized atomistic disorder in halide‐based solid electrolytes (SEs) can be leveraged to boost Li+mobility. In this study, Li+transport in structurally modified Li3HoCl6, via Brintroduction and Li+deficiency, is explored. The optimized Li3‐3yHo1+yCl6‐xBrxachieves an ionic conductivity of 3.8 mS cm−1at 25 °C, the highest reported for holmium halide materials.6,7Li nuclear magnetic resonance and relaxometry investigations unveil enhanced ion dynamics with bromination, attaining a Li+motional rate neighboring 116 MHz. X‐ray diffraction analyses reveal mixed‐anion‐induced phase transitions with disproportionate octahedral expansions and distortions, creating Ho‐free planes with favorable energetics for Li+migration. Bond valence site energy analysis highlights preferred Li+transport pathways, particularly in structural planes devoid of Ho3+blocking effects. Molecular dynamics simulations corroborate enhanced Li+diffusion with Brintroduction into Li3HoCl6. Li‐Ho electrostatic repulsions in the (001) plane presumably drive Li+diffusion into the Ho‐free (002) layer, enabling rapid intraplanar Li+motion and exchange between the 2d and 4h sites. Li3‐3yHo1+yCl6‐xBrxalso demonstrates good battery cycling stability. These findings offer valuable insights into the intricate correlations between structure and ion transport and will help guide the design of high‐performance fast ion conductors for all‐solid‐state batteries. 
    more » « less
  4. The layered transition metal chalcogenides MCrX2 (M = Ag, Cu; X = S, Se, Te) are of interest for energy storage because chemically Li-substituted analogs were reported as superionic Li+ conductors. The coexistence of fast ion transport and reducible transition metal and chalcogen elements suggests that this family may offer multifunctional capability for electrochemical storage. Here, we investigate the electrochemical reduction of AgCrSe2 and CuCrSe2 in non-aqueous Li- and Na-ion electrolytes using electrochemical measurements coupled with ex situ characterization (scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy). Both compounds delivered high initial specific capacities (~ 560 mAh/g), corresponding to 6.64 and 5.73 Li+/e- per formula unit for AgCrSe2 and CuCrSe2, respectively. We attribute this difference to distinct reduction pathways: 1) Li+ intercalation to form LiCrSe2 and extruded Ag or Cu, 2) conversion of LiCrSe2 to Li2Se, and 3) formation of an Ag-Li alloy at the lowest potential, operative only in AgCrSe2. Consistent with this proposed mechanism, step 3 was absent during reduction of AgCrSe2 in a Na-ion electrolyte since Ag does not alloy with Na. These results demonstrate the complex reduction chemistry of MCrX2 in the presence of alkali ions, providing insights into the use of MCrX2 materials as alkali ion superionic conductors or high capacity electrodes for lithium or sodium-ion type batteries. 
    more » « less
  5. The guest‐free, type‐II Si clathrate (Si136) is an open cage polymorph of Si with structural features amenable to electrochemical Li storage. However, the detailed mechanism for reversible Li insertion and migration within the vacant cages of Si136is not established. Herein, X‐ray characterization and density functional theory (DFT) calculations are used to understand the structural origin of electrochemical Li insertion into the type‐II clathrate structure. At low Li content, instead of alloying with Si, topotactic Li insertion into the empty cages occurs at ≈0.3 V versus Li/Li+with a capacity of ≈231 mAh g−1(corresponding to composition Li32Si136). A synchrotron powder X‐ray diffraction analysis of electrodes after lithiation shows evidence of Li occupation within the Si20and Si28cages and a volume expansion of 0.22%, which is corroborated by DFT calculations. Nudged elastic band calculations suggest a low barrier (0.2 eV) for Li migration through interconnected Si28cages, whereas there is a higher barrier for Li migration into Si20cages (2.0 eV). However, if Li is present in a neighboring cage, a cooperative migration pathway with a barrier of 0.65 eV is possible. The results show that the type‐II Si clathrate displays unique electrochemical properties for potential applications as Li‐ion battery anodes. 
    more » « less