skip to main content

Title: High-Throughput and Simultaneous Analysis of 12 Cannabinoids in Hemp Oil Using Liquid Chromatography With Ultraviolet (LC-UV) Detection
After attending this presentation, attendees will gain knowledge in the strategy to achieve high-throughput and simultaneous analysis of cannabinoids and appreciate a validated LC-UV method for analysis of twelve cannabinoids in hemp oil. This presentation will first impact the forensic science community by introducing three fast LC separations of twelve cannabinoids that can be used with either UV or mass spectrometric (MS) detection. It will further impact the forensic science community by introducing a validated LC-UV method for high-throughput and simultaneous analysis of twelve cannabinoids in hemp oil, which can be routinely used by cannabis testing labs. In recent years, the use of products of Cannabis sativa L. for medicinal purposes has been in a rapid growth, although their preparation procedure has not been clearly standardized and their quality has not been well regulated. To analyze the therapeutic components, i.e. cannabinoids, in products of Cannabis sativa L., LC-UV has been frequently used, because LC-UV is commonly available and usually appropriate for routine analysis by the cannabis growers and commercial suppliers. In the literature, a few validated LC-UV methods have been described. However, so far, all validated LC-UV methods only focused in the quantification of eleven or less cannabinoids. Therefore, a more » method able to simultaneously analyze more cannabinoids in a shorter run time is still in high demand, because more and more cannabinoids have been isolated and many of them have shown medicinal properties. In this study, the LC separation of twelve cannabinoids, including cannabichromene (CBC), cannabidiolic acid (CBDA), cannabidiol (CBD), cannabidivarinic acid (CBDVA), cannabidivarin (CBDV), cannabigerolic acid (CBGA), cannabigerol (CBG), cannabinol (CBN), delta-8 tetrahydrocannabinol (Δ8-THC), delta-9 tetrahydrocannabinolic acid A (Δ9-THCA A), delta-9 tetrahydrocannabinol (Δ9-THC), and tetrahydrocannabivarin (THCV), has been systematically optimized using a Phenomenex Luna Omega 3 µm Polar C18 150 mm × 4.6 mm column with regard to the effects of the type of organic solvent, i.e. methanol and acetonitrile, the content of the organic solvent, and the pH of the mobile phase. The optimization has resulted in three LC conditions at 1.0 mL/minute able to separate the twelve cannabinoids: 1) a mobile phase consisting of water and methanol, both containing 0.1% formic acid (pH 2.69), with a gradient elution at 75% methanol for the first 3 minutes and then linearly increase to 100% methanol at 12.5 minutes; 2) a mobile phase consisting of water and 90% (v/v) acetonitrile in water, both containing 0.1% formic acid and 20 mM ammonium formate (pH 3.69), with an isocratic elution at 75% acetonitrile for 14 minutes; and 3) a mobile phase consisting of water and 90% (v/v) acetonitrile in water, both containing 0.03% formic acid and 20 mM ammonium formate (pH 4.20), with an isocratic elution at 75% acetonitrile for 14 minutes. In order to demonstrate the effectiveness of the achieved LC separations, a LC-UV method is further validated for the high-throughput and simultaneous analysis of twelve cannabinoids. The method used the mobile phase at pH 3.69, which resulted in significant improvement in throughput compared to other validated LC-UV methods published so far. The method used flurbiprofen as the internal standard. The linear calibration range of all the cannabinoids were between 0.1 to 25 ppm with R2≥0.9993. The LOQ (S/N=10) of the cannabinoids was between 17.8 and 74.2 ppb. The validation used a hemp oil containing 3.2 wt% CBD and no other cannabinoids, which was reported by the vendor with a certificate of analysis, as the matrix to prepare control samples: the hemp oil was first extracted using liquid-liquid extraction (LLE) with methanol; cannabinoids were then spiked into the extract at both 0.5 ppm and 5 ppm level. Afterwards, the recovery, precision (%RSD) and accuracy (%Error) of the control samples were assessed and the results met the requirements by the ISO/IEC 17025 and ASTM E2549-14 guidelines. « less
Authors:
; ; ; ; ;
Award ID(s):
1827209
Publication Date:
NSF-PAR ID:
10173871
Journal Name:
2020 American Academy of Forensic Sciences Annual Scientific Meeting
Page Range or eLocation-ID:
pp. 234
Sponsoring Org:
National Science Foundation
More Like this
  1. A rapid and sensitive method is described for measuring perchlorate (ClO 4 − ), chlorate (ClO 3 − ), chlorite (ClO 2 − ), bromate (BrO 3 − ), and iodate (IO 3 − ) ions in natural and treated waters using non-suppressed ion chromatography with electrospray ionization and tandem mass spectrometry (NS-IC-MS/MS). Major benefits of the NS-IC-MS/MS method include a short analysis time (12 minutes), low limits of quantification for BrO 3 − (0.10 μg L −1 ), ClO 4 − (0.06 μg L −1 ), ClO 3 − (0.80 μg L −1 ), and ClO 2 − (0.40 μg L −1 ), and compatibility with conventional LC-MS/MS instrumentation. Chromatographic separations were generally performed under isocratic conditions with a Thermo Scientific Dionex AS16 column, using a mobile phase of 20% 1 M aqueous methylamine and 80% acetonitrile. The isocratic method can also be optimized for IO 3 − analysis by including a gradient from the isocratic mobile phase to 100% 1 M aqueous methylamine. Four common anions (Cl − , Br − , SO 4 2− , and HCO 3 − /CO 3 2− ), a natural organic matter isolate (Suwannee River NOM), and several real water samples weremore »tested to examine influences of natural water constituents on oxyhalide detection. Only ClO 2 − quantification was significantly affected – by elevated chloride concentrations (>2 mM) and NOM. The method was successfully applied to quantify oxyhalides in natural waters, chlorinated tap water, and waters subjected to advanced oxidation by sunlight-driven photolysis of free available chlorine (sunlight/FAC). Sunlight/FAC treatment of NOM-free waters containing 200 μg L −1 Br − resulted in formation of up to 263 ± 35 μg L −1 and 764 ± 54 μg L −1 ClO 3 − , and up to 20.1 ± 1.0 μg L −1 and 33.8 ± 1.0 μg L −1 BrO 3 − (at pH 6 and 8, respectively). NOM strongly inhibited ClO 3 − and BrO 3 − formation, likely by scavenging reactive oxygen or halogen species. As prior work shows that the greatest benefits in applying the sunlight/FAC process for purposes of improving disinfection of chlorine-resistant microorganisms are realized in waters with lower DOC levels and higher pH, it may therefore be desirable to limit potential applications to waters containing moderate DOC concentrations ( e.g. , ∼1–2 mg C L −1 ), low Br − concentrations ( e.g. , <50 μg L −1 ), and circumneutral to moderately alkaline pH ( e.g. , pH 7–8) to strike a balance between maximizing microbial inactivation while minimizing formation of oxyhalides and other disinfection byproducts.« less
  2. Abstract Background

    Hemp and marijuana are the two major varieties ofCannabis sativa. While both contain Δ9-tetrahydrocannabinol (THC), the primary psychoactive component ofC. sativa, they differ in the amount of THC that they contain. Presently, U.S. federal laws stipulate thatC. sativacontaining greater than 0.3% THC is classified as marijuana, while plant material that contains less than or equal to 0.3% THC is hemp. Current methods to determine THC content are chromatography-based, which requires extensive sample preparation to render the materials into extracts suitable for sample injection, for complete separation and differentiation of THC from all other analytes present. This can create problems for forensic laboratories due to the increased workload associated with the need to analyze and quantify THC in allC. sativamaterials.

    Method

    The work presented herein combines direct analysis in real time—high-resolution mass spectrometry (DART-HRMS) and advanced chemometrics to differentiate hemp and marijuana plant materials. Samples were obtained from several sources (e.g., commercial vendors, DEA-registered suppliers, and the recreationalCannabismarket). DART-HRMS enabled the interrogation of plant materials with no sample pretreatment. Advanced multivariate data analysis approaches, including random forest and principal component analysis (PCA), were used to optimally differentiate these two varieties with a high level of accuracy.

    Results

    When PCA was applied to themore »hemp and marijuana data, distinct clustering that enabled their differentiation was observed. Furthermore, within the marijuana class, subclusters between recreational and DEA-supplied marijuana samples were observed. A separate investigation using the silhouette width index to determine the optimal number of clusters for the marijuana and hemp data revealed this number to be two. Internal validation of the model using random forest demonstrated an accuracy of 98%, while external validation samples were classified with 100% accuracy.

    Discussion

    The results show that the developed approach would significantly aid in the analysis and differentiation ofC. sativaplant materials prior to launching painstaking confirmatory testing using chromatography. However, to maintain and/or enhance the accuracy of the prediction model and keep it from becoming outdated, it will be necessary to continue to expand it to include mass spectral data representative of emerging hemp and marijuana strains/cultivars.

    « less
  3. null (Ed.)
    Forensic laboratories are required to have analytical tools to confidently differentiate illegal substances such as marijuana from legal products (i.e., industrial hemp). The Achilles heel of industrial hemp is its association with marijuana. Industrial hemp from the Cannabis sativa L. plant is reported to be one of the strongest natural multipurpose fibers on earth. The Cannabis plant is a vigorous annual crop broadly separated into two classes: industrial hemp and marijuana. Up until the eighteenth century, hemp was one of the major fibers in the United States. The decline of its cultivation and applications is largely due to burgeoning manufacture of synthetic fibers. Traditional composite materials such as concrete, fiberglass insulation, and lumber are environmentally unfavorable. Industrial hemp exhibits environmental sustainability, low maintenance, and high local and national economic impacts. The 2018 Farm Bill made way for the legalization of hemp by categorizing it as an ordinary agricultural commodity. Unlike marijuana, hemp contains less than 0.3% of the cannabinoid, Δ9-tetrahydrocannabinol, the psychoactive compound which gives users psychotropic effects and confers illegality in some locations. On the other hand, industrial hemp contains cannabidiol found in the resinous flower of Cannabis and is purported to have multiple advantageous uses. There is amore »paucity of investigations of the identity, microbial diversity, and biochemical characterizations of industrial hemp. This review provides background on important topics regarding hemp and the quantification of total tetrahydrocannabinol in hemp products. It will also serve as an overview of emergent microbiological studies regarding hemp inflorescences. Further, we examine challenges in using forensic analytical methodologies tasked to distinguish legal fiber-type material from illegal drug-types.« less
  4. This work presents a microwave microfluidic sensor for high performance liquid chromatography (HPLC) applications. The sensor is based on a modified square ring loaded resonator (SRLR), where a transmission line and a ring are electrically shorted with a center gap. A microfluidic channel is bonded above the gap for liquid-under-test (LUT) measurement. When the dielectric constant of LUT is above a threshold value, two degeneration modes of the resonator are separated, resulting in two transmission-zero frequencies. The threshold dielectric constant can be easily tuned by the gap size. High sensitivity is achieved when LUT dielectric constant is close to the threshold value. These features enable the proposed resonator to be optimized for different microfluidic applications. To validate the design, three resonators with 10 µm, 30 µm and 90 µm gap sizes are built and tested with water-methanol solutions in various volume fractions. Additionally, the sensor is connected in series with HPLC system for caffeine and sucrose detection. The detection linearity is characterized by measuring water-caffeine samples from 0.77 ppm to 1000 ppm. A 0.231 ppm limit of detection (LOD) is achieved, revealing a comparable sensitivity with commercial ultraviolet (UV) detectors. The compatibility of the proposed sensor to gradient elution ismore »also demonstrated.« less
  5. Decavanadate (V 10 O 28 6− or V10) is a paradigmatic member of the polyoxidometalate (POM) family, which has been attracting much attention within both materials/inorganic and biomedical communities due to its unique structural and electrochemical properties. In this work we explored the utility of high-resolution electrospray ionization (ESI) mass spectrometry (MS) and ion exclusion chromatography LC/MS for structural analysis of V10 species in aqueous solutions. While ESI generates abundant molecular ions representing the intact V10 species, their isotopic distributions show significant deviations from the theoretical ones. A combination of high-resolution MS measurements and hydrogen/deuterium exchange allows these deviations to be investigated and interpreted as a result of partial reduction of V10. While the redox processes are known to occur in the ESI interface and influence the oxidation state of redox-active analytes, the LC/MS measurements using ion exclusion chromatography provide unequivocal evidence that the mixed-valence V10 species exist in solution, as extracted ion chromatograms representing V10 molecular ions at different oxidation states exhibit distinct elution profiles. The spontaneous reduction of V10 in solution is seen even in the presence of hydrogen peroxide and has not been previously observed. The susceptibility to reduction of V10 is likely to be shared bymore »other redox active POMs. In addition to the molecular V10 ions, a high-abundance ionic signal for a V 10 O 26 2− anion was displayed in the negative-ion ESI mass spectra. None of the V 10 O 26 cations were detected in ESI MS, and only a low-abundance signal was observed for V 10 O 26 anions with a single negative charge, indicating that the presence of abundant V 10 O 26 2− anions in ESI MS reflects gas-phase instability of V 10 O 28 anions carrying two charges. The gas-phase origin of the V 10 O 26 2− anion was confirmed in tandem MS measurements, where mild collisional activation was applied to V10 molecular ions with an even number of hydrogen atoms (H 4 V 10 O 28 2− ), resulting in a facile loss of H 2 O molecules and giving rise to V 10 O 26 2− as the lowest-mass fragment ion. Water loss was also observed for V 10 O 28 anions carrying an odd number of hydrogen atoms ( e.g. , H 5 V 10 O 28 − ), followed by a less efficient and incomplete removal of an OH˙ radical, giving rise to both HV 10 O 26 − and V 10 O 25 − fragment ions. Importantly, at least one hydrogen atom was required for ion fragmentation in the gas phase, as no further dissociation was observed for any hydrogen-free V10 ionic species. The presented workflow allows a distinction to be readily made between the spectral features revealing the presence of non-canonical POM species in the bulk solution from those that arise due to physical and chemical processes occurring in the ESI interface and/or the gas phase.« less