skip to main content


Title: High-Throughput and Simultaneous Analysis of 12 Cannabinoids in Hemp Oil Using Liquid Chromatography With Ultraviolet (LC-UV) Detection
After attending this presentation, attendees will gain knowledge in the strategy to achieve high-throughput and simultaneous analysis of cannabinoids and appreciate a validated LC-UV method for analysis of twelve cannabinoids in hemp oil. This presentation will first impact the forensic science community by introducing three fast LC separations of twelve cannabinoids that can be used with either UV or mass spectrometric (MS) detection. It will further impact the forensic science community by introducing a validated LC-UV method for high-throughput and simultaneous analysis of twelve cannabinoids in hemp oil, which can be routinely used by cannabis testing labs. In recent years, the use of products of Cannabis sativa L. for medicinal purposes has been in a rapid growth, although their preparation procedure has not been clearly standardized and their quality has not been well regulated. To analyze the therapeutic components, i.e. cannabinoids, in products of Cannabis sativa L., LC-UV has been frequently used, because LC-UV is commonly available and usually appropriate for routine analysis by the cannabis growers and commercial suppliers. In the literature, a few validated LC-UV methods have been described. However, so far, all validated LC-UV methods only focused in the quantification of eleven or less cannabinoids. Therefore, a method able to simultaneously analyze more cannabinoids in a shorter run time is still in high demand, because more and more cannabinoids have been isolated and many of them have shown medicinal properties. In this study, the LC separation of twelve cannabinoids, including cannabichromene (CBC), cannabidiolic acid (CBDA), cannabidiol (CBD), cannabidivarinic acid (CBDVA), cannabidivarin (CBDV), cannabigerolic acid (CBGA), cannabigerol (CBG), cannabinol (CBN), delta-8 tetrahydrocannabinol (Δ8-THC), delta-9 tetrahydrocannabinolic acid A (Δ9-THCA A), delta-9 tetrahydrocannabinol (Δ9-THC), and tetrahydrocannabivarin (THCV), has been systematically optimized using a Phenomenex Luna Omega 3 µm Polar C18 150 mm × 4.6 mm column with regard to the effects of the type of organic solvent, i.e. methanol and acetonitrile, the content of the organic solvent, and the pH of the mobile phase. The optimization has resulted in three LC conditions at 1.0 mL/minute able to separate the twelve cannabinoids: 1) a mobile phase consisting of water and methanol, both containing 0.1% formic acid (pH 2.69), with a gradient elution at 75% methanol for the first 3 minutes and then linearly increase to 100% methanol at 12.5 minutes; 2) a mobile phase consisting of water and 90% (v/v) acetonitrile in water, both containing 0.1% formic acid and 20 mM ammonium formate (pH 3.69), with an isocratic elution at 75% acetonitrile for 14 minutes; and 3) a mobile phase consisting of water and 90% (v/v) acetonitrile in water, both containing 0.03% formic acid and 20 mM ammonium formate (pH 4.20), with an isocratic elution at 75% acetonitrile for 14 minutes. In order to demonstrate the effectiveness of the achieved LC separations, a LC-UV method is further validated for the high-throughput and simultaneous analysis of twelve cannabinoids. The method used the mobile phase at pH 3.69, which resulted in significant improvement in throughput compared to other validated LC-UV methods published so far. The method used flurbiprofen as the internal standard. The linear calibration range of all the cannabinoids were between 0.1 to 25 ppm with R2≥0.9993. The LOQ (S/N=10) of the cannabinoids was between 17.8 and 74.2 ppb. The validation used a hemp oil containing 3.2 wt% CBD and no other cannabinoids, which was reported by the vendor with a certificate of analysis, as the matrix to prepare control samples: the hemp oil was first extracted using liquid-liquid extraction (LLE) with methanol; cannabinoids were then spiked into the extract at both 0.5 ppm and 5 ppm level. Afterwards, the recovery, precision (%RSD) and accuracy (%Error) of the control samples were assessed and the results met the requirements by the ISO/IEC 17025 and ASTM E2549-14 guidelines.  more » « less
Award ID(s):
1827209
NSF-PAR ID:
10173871
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2020 American Academy of Forensic Sciences Annual Scientific Meeting
Page Range / eLocation ID:
pp. 234
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Marijuana and hemp represent two broad classes ofCannabis sativaplants that are distinguished based on the concentration of the psychoactive cannabinoid delta‐9‐tetrahydrocannabinol (Δ9‐THC). In this work, solvent extracts derived from marijuana and hemp were characterized using optical and spectroscopic techniques. The crystalline components of the solvent extracts were first analyzed using polarized light microscopy to determine optical properties, namely, crystal system, optical sign, and principle refractive indices. Crystals from the marijuana‐derived extracts exhibited an orthorhombic crystal system and were optically negative, with nβbetween 1.6320 and 1.6330 ± 0.0002. In contrast, crystals from hemp‐derived extracts exhibited a monoclinic crystal system and were optically positive, with nβbetween 1.600 and 1.6040 ± 0.0002. Crystals were further distinguished through infrared spectroscopy, which highlighted structural differences between the two sample types, primarily based on differences in O‐H stretching. Finally, single‐crystal X‐ray diffraction was used to definitively identify the crystalline components, confirming the presence of tetrahydrocannabinolic acid in marijuana‐derived extracts and cannabidiol in hemp‐derived extracts. Given the differences in crystal structure identified between marijuana‐derived and hemp‐derived solvent extracts, optical characterization provides a screening method to differentiate visually similar samples prior to confirmatory analysis.

     
    more » « less
  2. Abstract

    Nalbuphine was a semisynthetic opioid analgesic widely used in the treatment of both acute and chronic pain. We developed and validated a rapid, simple and sensitive method by ultra-performance liquid chromatography–tandem mass spectrometry (MS/MS) for the simultaneous quantitation of nalbuphine in human plasma, and we reported the pharmacokinetic features of patients during general anesthesia for abdominal surgery. Sample separation was achieved on a Kinetex Phenyl-Hexyl column (50 × 2.1 mm, 1.7 μm) after simple protein precipitation with acetonitrile. The mobile phase was composed of acetonitrile and 3 mM of ammonium acetate aqueous solution with 0.1% formic acid. Gradient elution was used in 4.5 min with a flow rate of 0.5 mL/min at 40°C. MS detection using AB Sciex QTRAP 5500 mass spectrometer was characterized by electrospray ionization for positive ions in multiple reaction monitoring mode. Quantitative ion pairs were m/z 358.4 → 340.1 for nalbuphine and m/z 340.0 → 268.3 for nalmefene, which were used as the internal standard (IS). The calibration curves showed good linearity (r2>0.99) over concentration range of 0.1–500 ng/mL. The intra-and inter-batch precisions were within 10.67%, and accuracy ranged from 94.07 to 105.34%. The IS–normalized matrix factors were 1.02–1.03 with RSD% (≤5.82%). The recoveries ranged from 101.09 to 106.30%. In conclusion, a rapid, simple, sensitive and economical analytical method was developed and validated to detect the concentration in plasma samples obtained from patients receiving nalbuphine intravenous injection and was successfully applicated to human pharmacokinetic studies of nalbuphine.

     
    more » « less
  3. Abstract Background

    Hemp and marijuana are the two major varieties ofCannabis sativa. While both contain Δ9-tetrahydrocannabinol (THC), the primary psychoactive component ofC. sativa, they differ in the amount of THC that they contain. Presently, U.S. federal laws stipulate thatC. sativacontaining greater than 0.3% THC is classified as marijuana, while plant material that contains less than or equal to 0.3% THC is hemp. Current methods to determine THC content are chromatography-based, which requires extensive sample preparation to render the materials into extracts suitable for sample injection, for complete separation and differentiation of THC from all other analytes present. This can create problems for forensic laboratories due to the increased workload associated with the need to analyze and quantify THC in allC. sativamaterials.

    Method

    The work presented herein combines direct analysis in real time—high-resolution mass spectrometry (DART-HRMS) and advanced chemometrics to differentiate hemp and marijuana plant materials. Samples were obtained from several sources (e.g., commercial vendors, DEA-registered suppliers, and the recreationalCannabismarket). DART-HRMS enabled the interrogation of plant materials with no sample pretreatment. Advanced multivariate data analysis approaches, including random forest and principal component analysis (PCA), were used to optimally differentiate these two varieties with a high level of accuracy.

    Results

    When PCA was applied to the hemp and marijuana data, distinct clustering that enabled their differentiation was observed. Furthermore, within the marijuana class, subclusters between recreational and DEA-supplied marijuana samples were observed. A separate investigation using the silhouette width index to determine the optimal number of clusters for the marijuana and hemp data revealed this number to be two. Internal validation of the model using random forest demonstrated an accuracy of 98%, while external validation samples were classified with 100% accuracy.

    Discussion

    The results show that the developed approach would significantly aid in the analysis and differentiation ofC. sativaplant materials prior to launching painstaking confirmatory testing using chromatography. However, to maintain and/or enhance the accuracy of the prediction model and keep it from becoming outdated, it will be necessary to continue to expand it to include mass spectral data representative of emerging hemp and marijuana strains/cultivars.

     
    more » « less
  4. Abstract

    Microbial production of cannabinoids promises to provide a consistent, cheaper, and more sustainable supply of these important therapeutic molecules. However, scaling production to compete with traditional plant-based sources is challenging. Our ability to make strain variants greatly exceeds our capacity to screen and identify high producers, creating a bottleneck in metabolic engineering efforts. Here, we present a yeast-based biosensor for detecting microbially produced Δ9-tetrahydrocannabinol (THC) to increase throughput and lower the cost of screening. We port five human cannabinoid G protein-coupled receptors (GPCRs) into yeast, showing the cannabinoid type 2 receptor, CB2R, can couple to the yeast pheromone response pathway and report on the concentration of a variety of cannabinoids over a wide dynamic and operational range. We demonstrate that our cannabinoid biosensor can detect THC from microbial cell culture and use this as a tool for measuring relative production yields from a library of Δ9-tetrahydrocannabinol acid synthase (THCAS) mutants.

     
    more » « less
  5. null (Ed.)
    A rapid and sensitive method is described for measuring perchlorate (ClO 4 − ), chlorate (ClO 3 − ), chlorite (ClO 2 − ), bromate (BrO 3 − ), and iodate (IO 3 − ) ions in natural and treated waters using non-suppressed ion chromatography with electrospray ionization and tandem mass spectrometry (NS-IC-MS/MS). Major benefits of the NS-IC-MS/MS method include a short analysis time (12 minutes), low limits of quantification for BrO 3 − (0.10 μg L −1 ), ClO 4 − (0.06 μg L −1 ), ClO 3 − (0.80 μg L −1 ), and ClO 2 − (0.40 μg L −1 ), and compatibility with conventional LC-MS/MS instrumentation. Chromatographic separations were generally performed under isocratic conditions with a Thermo Scientific Dionex AS16 column, using a mobile phase of 20% 1 M aqueous methylamine and 80% acetonitrile. The isocratic method can also be optimized for IO 3 − analysis by including a gradient from the isocratic mobile phase to 100% 1 M aqueous methylamine. Four common anions (Cl − , Br − , SO 4 2− , and HCO 3 − /CO 3 2− ), a natural organic matter isolate (Suwannee River NOM), and several real water samples were tested to examine influences of natural water constituents on oxyhalide detection. Only ClO 2 − quantification was significantly affected – by elevated chloride concentrations (>2 mM) and NOM. The method was successfully applied to quantify oxyhalides in natural waters, chlorinated tap water, and waters subjected to advanced oxidation by sunlight-driven photolysis of free available chlorine (sunlight/FAC). Sunlight/FAC treatment of NOM-free waters containing 200 μg L −1 Br − resulted in formation of up to 263 ± 35 μg L −1 and 764 ± 54 μg L −1 ClO 3 − , and up to 20.1 ± 1.0 μg L −1 and 33.8 ± 1.0 μg L −1 BrO 3 − (at pH 6 and 8, respectively). NOM strongly inhibited ClO 3 − and BrO 3 − formation, likely by scavenging reactive oxygen or halogen species. As prior work shows that the greatest benefits in applying the sunlight/FAC process for purposes of improving disinfection of chlorine-resistant microorganisms are realized in waters with lower DOC levels and higher pH, it may therefore be desirable to limit potential applications to waters containing moderate DOC concentrations ( e.g. , ∼1–2 mg C L −1 ), low Br − concentrations ( e.g. , <50 μg L −1 ), and circumneutral to moderately alkaline pH ( e.g. , pH 7–8) to strike a balance between maximizing microbial inactivation while minimizing formation of oxyhalides and other disinfection byproducts. 
    more » « less