skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust Spatial-Temporal Incident Prediction
Spatio-temporal incident prediction is a central issue in law enforcement, with applications in fighting crimes like poaching, human trafficking, illegal fishing, burglaries and smuggling. However, state of the art approaches fail to account for evasion in response to predictive models, a common form of which is spatial shift in incident occurrence. We present a general approach for incident forecasting that is robust to spatial shifts. We propose two techniques for solving the resulting robust optimization problem: first, a constraint generation method guaranteed to yield an optimal solution, and second, a more scalable gradientbased approach. We then apply these techniques to both discrete-time and continuoustime robust incident forecasting. We evaluate our algorithms on two different real-world datasets, demonstrating that our approach is significantly  more » « less
Award ID(s):
1905558
PAR ID:
10174000
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Conference on Uncertainty in Artificial Intelligence (UAI)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Principled decision making in emergency response management necessitates the use of statistical models that predict the spatial-temporal likelihood of incident occurrence. These statistical models are then used for proactive stationing which allocates first responders across the spatial area in order to reduce overall response time. Traditional methods that simply aggregate past incidents over space and time fail to make useful short-term predictions when the spatial region is large and focused on fine-grained spatial entities like interstate highway networks. This is partially due to the sparsity of incidents with respect to the area in consideration. Further, accidents are affected by several covariates, and collecting, cleaning, and managing multiple streams of data from various sources is challenging for large spatial areas. In this paper, we highlight how this problem is being solved for the state of Tennessee, a state in the USA with a total area of over 100,000 sq. km. Our pipeline, based on a combination of synthetic resampling, non-spatial clustering, and learning from data can efficiently forecast the spatial and temporal dynamics of accident occurrence, even under sparse conditions. In the paper, we describe our pipeline that uses data related to roadway geometry, weather, historical accidents, and real-time traffic congestion to aid accident forecasting. To understand how our forecasting model can affect allocation and dispatch, we improve upon a classical resource allocation approach. Experimental results show that our approach can significantly reduce response times in the field in comparison with current approaches followed by first responders. 
    more » « less
  2. Automatic incident detection (AID) is crucial for reducing non-recurrent congestion caused by trac incidents. In this paper we propose a data-driven AID framework that can leverage large-scale historical trac data along with the inherent topology of the trac networks to obtain robust trac patterns. Such trac patterns can be compared with the real-time trac data to detect trac incidents in the road network. Our AID framework consists of two basic steps for trac pattern estimation. First, we estimate robust univariate speed threshold using historical trac information from individual sensors. This step can be parallelized using MapReduce framework thereby making it feasible to implement the framework over large networks. Our study shows that such robust thresholds can improve incident detection performance significantly compared to traditional threshold determination. Second, we leverage the knowledge of the topology of the road network to construct threshold heatmaps and perform image denoising to obtain spatio-temporally denoised thresholds. We used two image denoising techniques, bilateral filtering and total variation for this purpose. Our study shows that overall AID performance can be improved significantly using bilateral filter denoising compared to the noisy thresholds or thresholds obtained using total variation denoising. 
    more » « less
  3. Emergency Response Management (ERM) is a critical problem faced by communities across the globe. Despite this, it is common for ERM systems to follow myopic decision policies in the real world. Principled approaches to aid ERM decision-making under uncertainty have been explored but have failed to be accepted into real systems. We identify a key issue impeding their adoption — algorithmic approaches to emergency response focus on reactive, post-incident dispatching actions, i.e. optimally dispatching a responder after incidents occur. However, the critical nature of emergency response dictates that when an incident occurs, first responders always dispatch the closest available responder to the incident. We argue that the crucial period of planning for ERM systems is not post-incident, but between incidents. This is not a trivial planning problem — a major challenge with dynamically balancing the spatial distribution of responders is the complexity of the problem. An orthogonal problem in ERM systems is planning under limited communication, which is particularly important in disaster scenarios that affect communication networks. We address both problems by proposing two partially decentralized multi-agent planning algorithms that utilize heuristics and exploit the structure of the dispatch problem. We evaluate our proposed approach using real-world data, and find that in several contexts, dynamic re-balancing the spatial distribution of emergency responders reduces both the average response time as well as its variance. 
    more » « less
  4. Emergency Response Management (ERM) is a critical problem faced by communities across the globe. Despite this, it is common for ERM systems to follow myopic decision policies in the real world. Principled approaches to aid ERM decision-making under uncertainty have been explored but have failed to be accepted into real systems. We identify a key issue impeding their adoption --- algorithmic approaches to emergency response focus on reactive, post-incident dispatching actions, i.e. optimally dispatching a responder after incidents occur. However, the critical nature of emergency response dictates that when an incident occurs, first responders always dispatch the closest available responder to the incident. We argue that the crucial period of planning for ERM systems is not post-incident, but between incidents. This is not a trivial planning problem --- a major challenge with dynamically balancing the spatial distribution of responders is the complexity of the problem. An orthogonal problem in ERM systems is planning under limited communication, which is particularly important in disaster scenarios that affect communication networks. We address both problems by proposing two partially decentralized multi-agent planning algorithms that utilize heuristics and exploit the structure of the dispatch problem. We evaluate our proposed approach using real-world data, and find that in several contexts, dynamic re-balancing the spatial distribution of emergency responders reduces both the average response time as well as its variance. 
    more » « less
  5. Designing effective emergency response management (ERM) systems to respond to incidents such as road accidents is a major problem faced by communities. In addition to responding to frequent incidents each day (about 240 million emergency medical services calls and over 5 million road accidents in the US each year), these systems also support response during natural hazards. Recently, there has been a consistent interest in building decision support and optimization tools that can help emergency responders provide more efficient and effective response. This includes a number of principled subsystems that implement early incident detection, incident likelihood forecasting and strategic resource allocation and dispatch policies. In this paper, we highlight the key challenges and provide an overview of the approach developed by our team in collaboration with our community partners. 
    more » « less