skip to main content


Title: The missing NH stretch fundamental in S 1 methyl anthranilate: IR-UV double resonance experiments and local mode theory
The infrared spectra of jet-cooled methyl anthranilate (MA) and the MA–H 2 O complex are reported in both S 0 and S 1 states, recorded using fluorescence-dip infrared (FDIR) spectroscopy under jet-cooled conditions. Using a combination of local mode CH stretch modeling and scaled harmonic vibrational character, a near-complete assignment of the infrared spectra is possible over the 1400–3700 cm −1 region. While the NH stretch fundamentals are easily observed in the S 0 spectrum, in the S 1 state, the hydrogen bonded NH stretch shift is not readily apparent. Scaled harmonic calculations predict this fundamental at just below 2900 cm −1 with an intensity around 400 km mol −1 . However, the experimental spectrum shows no evidence of this transition. A local mode theory is developed in which the NH stretch vibration is treated adiabatically. Minimizing the energy of the corresponding stretch state with one quantum of excitation leads to a dislocation of the H atom where there is equal sharing between N and O atoms. The sharing occurs as a result of significant molecular arrangement due to strong coupling of this NH stretch to other internal degrees of freedom and in particular to the contiguous HNC bend. A two-dimensional model of the coupling between the NH stretch and this bend highlights important nonlinear effects that are not captured by low order vibrational perturbation theory. In particular, the model predicts a dramatic dilution of the NH stretch oscillator strength over many transitions spread over more than 1000 cm −1 , making it difficult to observe experimentally.  more » « less
Award ID(s):
1764148
NSF-PAR ID:
10174003
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
25
ISSN:
1463-9076
Page Range / eLocation ID:
14077 to 14087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Laser-induced fluorescence (LIF) excitation, dispersed fluorescence (DFL), UV–UV-hole burning, and UV-depletion spectra have been collected on methyl anthranilate (MA, methyl 2-aminobenzoate) and its water-containing complex (MA–H 2 O), under jet-cooled conditions in the gas phase. As a close structural analog of a sunscreen agent, MA has a strong absorption due to the S 0 –S 1 transition that begins in the UV-A region, with the electronic origin at 28 852 cm −1 (346.6 nm). Unlike most sunscreens that have fast non-radiative pathways back to the ground state, MA fluoresces efficiently, with an excited state lifetime of 27 ns. Relative to methyl benzoate, inter-system crossing to the triplet manifold is shut off in MA by the strong intramolecular NH⋯OC H-bond, which shifts the 3 nπ* state well above the 1 ππ* S 1 state. Single vibronic level DFL spectra are used to obtain a near-complete assignment of the vibronic structure in the excited state. Much of the vibrational structure in the excitation spectrum is Franck–Condon activity due to three in-plane vibrations that modulate the distance between the NH 2 and CO 2 Me groups, ν 33 (421 cm −1 ), ν 34 (366 cm −1 ), and ν 36 (179 cm −1 ). Based on the close correspondence between experiment and theory at the TD-DFT B3LYP-D3BJ/def2TZVP level of theory, the major structural changes associated with electronic excitation are evaluated, leading to the conclusion that the major motion is a reorientation and constriction of the 6-membered H-bonded ring closed by the intramolecular NH⋯OC H-bond. This leads to a shortening of the NH⋯OC H-bond distance from 1.926 Å to 1.723 Å, equivalent to about a 25% reduction in the H⋯O distance compared to full H-atom transfer. As a result, the excited state process near the S 1 origin is a hydrogen atom dislocation that is brought about primarily by heavy atom motion, since the shortened H-bond distance results from extensive heavy-atom motion, with only a 0.03 Å increase in the NH bond length relative to its ground state value. 
    more » « less
  2. Phenol–benzimidazole and phenol–pyridine proton-coupled electron transfer (PCET) dyad systems are computationally investigated to resolve the origins of the asymmetrically broadened H-bonded OH stretch transitions that have been previously reported using cryogenic ion vibrational spectroscopy in the ground electronic state. Two-dimensional (2D) potentials describing the strongly shared H atom are predicted to be very shallow along the H atom transfer coordinate, enabling dislocation of the H atom between the donor and acceptor groups upon excitation of the OH vibrational modes. These soft H atom potentials result in strong coupling between the OH modes, which exhibit significant bend-stretch mixing, and a large number of normal mode coordinates. Vibrational spectra are calculated using a Hamiltonian that linearly and quadratically couples the H atom potentials to over two dozen of the most strongly coupled normal modes treated at the harmonic level. The calculated vibrational spectra qualitatively reproduce the asymmetric shape and breadth of the experimentally observed bands in the 2300–3000 cm–1 range. Interestingly, these transitions fall well above the predicted OH stretch fundamentals, which are computed to be surprisingly red-shifted (<2000 cm–1). Time-dependent calculations predict rapid (<100 fs) relaxation of the excited OH modes and instant response from the lower-frequency normal modes, corroborating the strong coupling predicted by the model Hamiltonian. The results highlight a unique broadening mechanism and complicated anharmonic effects present within these biologically relevant PCET model systems. 
    more » « less
  3. We report vibrational spectra of the H 2 -tagged, cryogenically cooled X −  · HOCl (X = Cl, Br, and I) ion–molecule complexes and analyze the resulting band patterns with electronic structure calculations and an anharmonic theoretical treatment of nuclear motions on extended potential energy surfaces. The complexes are formed by “ligand exchange” reactions of X −  · (H 2 O) n clusters with HOCl molecules at low pressure (∼10 −2  mbar) in a radio frequency ion guide. The spectra generally feature many bands in addition to the fundamentals expected at the double harmonic level. These “extra bands” appear in patterns that are similar to those displayed by the X −  · HOD analogs, where they are assigned to excitations of nominally IR forbidden overtones and combination bands. The interactions driving these features include mechanical and electronic anharmonicities. Particularly intense bands are observed for the v = 0 → 2 transitions of the out-of-plane bending soft modes of the HOCl molecule relative to the ions. These involve displacements that act to break the strong H-bond to the ion, which give rise to large quadratic dependences of the electric dipoles (electronic anharmonicities) that drive the transition moments for the overtone bands. On the other hand, overtone bands arising from the intramolecular OH bending modes of HOCl are traced to mechanical anharmonic coupling with the v = 1 level of the OH stretch (Fermi resonances). These interactions are similar in strength to those reported earlier for the X −  · HOD complexes. 
    more » « less
  4. The photodissociation dynamics of the dimethyl-substituted acetone oxide Criegee intermediate [(CH 3 ) 2 COO] is characterized following electronic excitation on the π*←π transition, which leads to O ( 1 D) + acetone [(CH 3 ) 2 CO, S0] products. The UV action spectrum of (CH 3 ) 2 COO recorded with O ( 1 D) detection under jet-cooled conditions is broad, unstructured, and essentially unchanged from the corresponding electronic absorption spectrum obtained using a UV-induced depletion method. This indicates that UV excitation of (CH 3 ) 2 COO leads predominantly to the O ( 1 D) product channel. A higher energy O ( 3 P) + (CH3)2CO (T1) product channel is not observed, although it is energetically accessible. This is attributed to the relatively weak absorption cross section at UV excitation energies above the threshold. In addition, complementary MS-CASPT2 trajectory surface-hopping (TSH) simulations indicate minimal population leading to the O ( 3 P) channel and non-unity overall probability for dissociation (within 100 fs). Velocity map imaging of the O ( 1 D) products is utilized to reveal the total kinetic energy release (TKER) distribution upon photodissociation of (CH 3 ) 2 COO at various UV excitation energies. Simulation of the TKER distributions is performed using a hybrid model that combines an impulsive model with a statistical component, the latter reflecting the longer-lived (> 100 fs) trajectories identified in the TSH calculations. The impulsive model accounts for vibrational activation of (CH 3 ) 2 CO arising from geometrical changes between the Criegee intermediate and the carbonyl product, indicating the importance of CO stretch, CCO bend, and CC stretch along with activation of hindered rotation and rock of the methyl groups in the (CH 3 ) 2 CO product. Detailed comparison is also made with the TKER distribution arising from photodissociation dynamics of CH 2 OO upon UV excitation. 
    more » « less
  5. Vibronically resolved laser-induced fluorescence/dispersed fluorescence (LIF/DF) and cavity ring-down (CRD) spectra of the electronic transition of the calcium isopropoxide [CaOCH(CH 3 ) 2 ] radical have been obtained under jet-cooled conditions. An essentially constant energy separation of 68 cm −1 has been observed for the vibrational ground levels and all fundamental vibrational levels accessed in the LIF measurement. To simulate the experimental spectra and assign the recorded vibronic bands, Franck–Condon (FC) factors and vibrational branching ratios (VBRs) are predicted from vibrational modes and their frequencies calculated using the complete-active-space self-consistent field (CASSCF) and equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) methods. Combined with the calculated electronic transition energy, the computational results, especially those from the EOM-CCSD calculations, reproduced the experimental spectra with considerable accuracy. The experimental and computational results suggest that the FC matrix for the studied electronic transition is largely diagonal, but transitions from the vibrationless levels of the à state to the X̃-state levels of the CCC bending ( ν 14 and ν 15 ), CaO stretch ( ν 13 ), and CaOC asymmetric stretch ( ν 9 and ν 11 ) modes also have considerable intensities. Transitions to low-frequency in-plane [ ν 17 ( a ′)] and out-of-plane [ ν 30 ( a ′′)] CaOC bending modes were observed in the experimental LIF/DF spectra, the latter being FC-forbidden but induced by the pseudo-Jahn–Teller (pJT) effect. Both bending modes are coupled to the CaOC asymmetric stretch mode via the Duschinsky rotation, as demonstrated in the DF spectra obtained by pumping non-origin vibronic transitions. The pJT interaction also induces transitions to the ground-state vibrational level of the ν 10 ( a ′) mode, which has the CaOC bending character. Our combined experimental and computational results provide critical information for future direct laser cooling of the target molecule and other alkaline earth monoalkoxide radicals. 
    more » « less