Natural fiber-reinforced polymers are currently used in a variety of low- to high-performance applications in the automotive, packaging, and construction industries. Previous studies have demonstrated that natural fibers (e.g., flax, hemp) exhibit good tensile mechanical properties and have positive environmental and economic attributes such as low cost, rapid renewability, and worldwide availability. However, natural fibers are inherently susceptible moisture-induced changes in physical and mechanical properties, which can be unfavorable for in-service use. This study illustrates how a micromechanics-based modelling approach can be used to help facilitate durability design and mitigate the deleterious effects of freeze-thaw deterioration in wood-plastic composites (WPCs). The model described in this study predicts the critical fiber volume fraction (V_fcrit) at which damage to the composite will occur under certain environmental conditions for different WPC formulations of hardwood and softwood fiber reinforcement and polymer matrix types. As expected, the results show that V_fcrit increases (a positive result) as anticipated in situ moisture content decreases. In addition, results suggest that fiber packing distribution directly influences V_fcrit and that V_fcrit increases as the mechanical properties of the polymer matrix increase. In sum, the study demonstrates how predictive modeling can be applied during the design phase to ensure the durability of WPCs.
more »
« less
Moisture- and freeze-thaw-induced deterioration of natural fiber composites with low fiber contents
Social, political, and environmental pressures continue to drive the development of sustainable alternatives to petroleum-based materials. Accordingly, natural fiber composites (NFCs) are being developed and used for a range of low- and high- performance applications, such as packaging, automotive parts, and construction materials. As the use of NFCs become more widespread, there is a rising need to investigate the effect of weathering on this emerging class of materials. Previous studies on the moisture and freeze-thaw induced deterioration of NFCs have focused primarily on composites with high fiber contents (>50% by volume). Due to factors, such as low cost, bio-renewability, and enhanced mechanical properties, most commercially available NFCs maximize the content of natural fibers. However, high fiber contents also increase susceptibility to the deleterious effects of environmental aggressors (e.g., moisture and temperature). Since limited data exists on the durability of low-fiber content NFCs, this study investigates the moisture-induced deterioration of NFCs with low fiber content and explicitly analyzes the added effects due to freezing and thawing. Results from a combination of environmental conditioning and X-ray tomography provide and visual evidence of the effect of moisture-induced damage in low-fiber NFCs. Results also show that this deterioration is exacerbated by below-freezing temperatures. Investigating the response of NFCs to such environmental aggressors as demonstrated in this study provides an evidenced-based approach for material design, which ultimately depends on both the intended application and expected environmental conditions.
more »
« less
- Award ID(s):
- 1537194
- PAR ID:
- 10174034
- Date Published:
- Journal Name:
- Academic journal of civil engireering
- ISSN:
- 2680-1000
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Thermoplastic resins (linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and polypropylene (PP)) reinforced by different content ratios of raw agave fibers were prepared and characterized in terms of their mechanical, thermal, and chemical properties as well as their morphology. The morphological properties of agave fibers and films were characterized by scanning electron microscopy and the variations in chemical interactions between the filler and matrix materials were studied using Fourier-transform infrared spectroscopy. No significant chemical interaction between the filler and matrix was observed. Melting point and crystallinity of the composites were evaluated for the effect of agave fiber on thermal properties of the composites, and modulus and yield strength parameters were inspected for mechanical analysis. While addition of natural fillers did not affect the overall thermal properties of the composite materials, elastic modulus and yielding stress exhibited direct correlation to the filler content and increased as the fiber content was increased. The highest elastic moduli were achieved with 20 wt % agave fiber for all the three composites. The values were increased by 319.3%, 69.2%, and 57.2%, for LLDPE, HDPE, and PP, respectively. The optimum yield stresses were achieved with 20 wt % fiber for LLDPE increasing by 84.2% and with 30 wt % for both HDPE and PP, increasing by 52% and 12.3% respectively.more » « less
-
Amziane, S.; Merta, I.; Page, J. (Ed.)Natural earth-fiber building assemblies such as light straw clay, hempcrete, and clay-plastered straw bales incorporate vegetable by-products that are mixed with geological binders, traditionally used as an insulative infill in building construction. As a geo- and bio-based insulative infill method composed mostly of fiber, heat transfer coefficients are lower than mass materials, making it a compatible assembly that meets energy code requirements. Furthermore, due to their permeability, these materials exhibit high hygric capacity, providing regulated indoor temperatures and relative humidity levels, thus showing a promising future for socially just and healthier built environments. Despite these advantages, the use of earth-fiber building materials in digital construction is still underdeveloped. In the past few years, 3D-printed earth has gained an increasing interest, however, high contents of fibers in earth mixtures have yet to be fully tested and characterized. This paper presents an experimental workflow to characterize fiber-earth composites for 3D printed assemblies, using natural soils infused with natural fibers. The paper begins with a literature review of a range of fibers: straw, hemp, kenaf, sisal, and banana leaves, as well as naturally occurring biopolymer additives. The experimental setup includes manual extrudability and buildability tests, to identify optimal mix designs that are then tested for their printability and buckling using clay 3D printers. As a final deliverable, first pass geometric studies showcase the lightweight and structural possibilities of each material. The significance of this research lies in the development of a methodology for identifying novel mix design for digital fabrication, by increasing carbon storing vegetable fiber content within digital earth, and by creating a range of natural 3D printed assembly types: from mass-insulation walls to paper-thin lightweight partition assemblage.more » « less
-
Abstract Polymeric composites absorb measurable amounts of moisture from their environment in almost all operating conditions. This absorbed moisture exists either in the “free” state, without any interactions, or in the “bound” state—interacting with the polymer matrix via secondary bonding mechanisms. The ratio and distribution of these water states within a moisture‐contaminated polymer composite are sensitive to physical damage. However, the water state distribution is also affected by variations in total water content resulting from humidity or precipitation‐driven fluctuations in the ambient environment, which could confound the ability to detect damage within the polymer matrix using this technique. To understand the effect of moisture content variations on water state distribution, low levels of barely visible impact damage were induced in epoxy/glass fiber composites. Spatial variations in polymer–water interactions were identified by their characteristic dielectric properties, measured using a split post dielectric resonator operating at 5 GHz. Gravimetric moisture uptake and relative permittivity were monitored during the absorption and desorption processes. Results indicate moisture absorption/desorption history has a significant effect on the sensitivity of damage detection using water state variations. Damage‐dependent hysteresis was observed in relative permittivity, highlighting an avenue by which the confounding effects of moisture absorption/desorption history may be mitigated.more » « less
-
Abstract Composites play progressively significant roles across a spectrum of applications involving high‐performance materials and products within industries such as aerospace, naval, automotive, construction, missiles, and defense technology. Notably, oriented fiber composites have garnered substantial attention due to their advantageous attributes like a high strength‐to‐weight ratio and controlled anisotropy. Nonetheless, challenges persist in uneven fiber alignment, fiber clustering within the matrix material, and constraints on fiber volume, impeding the mass production of oriented fiber‐reinforced composites. In this study, we present a novel approach to 3D printing of uniformly aligned short fiber reinforcement in a composite of heavily loaded carbon and nylon. Capitalizing on the additive manufacturing potential of rapidity and precision, the extrusion process induces carbon fiber (CF) alignments in filaments via shear forces. The 3D‐printed structures that were created displayed impressive potential for customization. They consistently demonstrated improved mechanical and thermal properties when compared to the original nylon structures. Our methodology for producing uniformly dispersed and aligned short fiber reinforcement in polymer composites promises to propel the advancement of design and manufacturing for high‐performance composite materials and components.more » « less
An official website of the United States government

