skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RTD Light Emission around 1550 nm with IQE up to 6% at 300 K
Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018).  more » « less
Award ID(s):
1711733 1848865
PAR ID:
10174242
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Device Research Conference (DRC), Columbus, OH (June 22-24, 2020)
Page Range / eLocation ID:
1 to 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recently there has been renewed interest in resonant tunnel diodes (RTD) owing to the demonstration of repeatable room temperature negative differential resistance (RT-NDR) [1], [2] and high peak current densities [3] in GaN-based RTDs. While most of the successful demonstrations of RT-NDR have been from device structures grown on low dislocation-density, freestanding (FS) GaN substrates, there have been a few reports of repeatable RT-NDR from GaN-based RTDs grown on GaN templates on sapphire [4], [5], which have significantly higher densities of threading dislocations (TDs) than FS GaN substrates, but much lower cost. Furthermore, due to the large spontaneous and piezoelectric charge found at the heterointerfaces in III-nitrides, GaN-based RTDs, such as the one illustrated in Fig. 1(a), have highly unusual energy band diagrams, even at 0V bias [Fig. 1(b)]. However, observations of RT-NDR in GaN RTDs on GaN templated sapphire substrates have been restricted to devices of very small active area, typically less than 10 μm 2 [4], [5]. 
    more » « less
  2. Time-resolved and quasi-cw photoluminescence (PL) spectroscopy was applied to measure the internal quantum efficiency (IQE) of c-plane InGaN single quantum wells (QWs) grown on sapphire substrates using metal-organic chemical vapor deposition. The identical temperature dependence of the PL decay times and radiative recombination times at low temperatures confirmed that the low temperature IQE is 100%, which allowed evaluation of the absolute IQE at elevated temperatures. At 300 K, the IQE for QWs emitting in green and green–yellow spectral regions was more than 60%. The weak nonradiative recombination in QWs with a substantial concentration of threading dislocations and V-defects (∼2 × 108 cm−2) shows that these extended defects do not notably affect the carrier recombination. 
    more » « less
  3. We report InGaAs/InP based p-i-n photodiodes with an external quantum efficiency (EQE) above 98% from 1510 nm to 1575 nm. For surface normal photodiodes with a diameter of 80 µm, the measured 3-dB bandwidth is 3 GHz. The saturation current is 30.5 mA, with an RF output power of 9.3 dBm at a bias of −17 V at 3 GHz. 
    more » « less
  4. We report an investigation of V-coupled cavity interband cascade (IC) lasers (ICLs) emitting in the 3-μm wavelength range, employing various waveguide structures and coupler sizes. Type-II ICL devices with double-ridge waveguides exhibited wide tuning ranges exceeding 153 nm. Type-I ICL devices with deep-etched waveguides achieved single-mode emission with wavelength tunable over 100 nm at relatively high temperatures up to 250 K. All devices exhibited a side-mode suppression ratio higher than 30 dB. By comparing the performance of all devices with different sizes and configurations, a good tolerance against the structural parameter variations of the V-coupled cavity laser (VCCL) design is demonstrated, validating the advantages of the VCCL to achieve single-mode emission with wide tunability. 
    more » « less
  5. Abstract Transition‐metal borides (TMBs) have recently attracted attention as excellent hydrogen evolution (HER) electrocatalysts in bulk crystalline materials. Herein, we show for the first time that VB and V3B4have high electrocatalytic HER activity. Furthermore, we show that the HER activity (in 0.5 mH2SO4) increases with increasing boron chain condensation in vanadium borides: Using a −23 mV overpotential decrement derived from −0.296 mV (for VB at −10 mA cm−2current density) and −0.273 mV (for V3B4) we accurately predict the overpotential of VB2(−0.204 mV) as well as that of unstudied V2B3(−0.250 mV) and hypothetical “V5B8” (−0.227 mV). We then derived an exponential equation that predicts the overpotentials of known and hypothetical VxByphases containing at least a boron chain. These results provide a direct correlation between crystal structure and HER activity, thus paving the way for the design of even better electrocatalytic materials through structure–activity relationships. 
    more » « less