skip to main content

Title: RTD Light Emission around 1550 nm with IQE up to 6% at 300 K
Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018).  more » « less
Award ID(s):
1711733 1848865
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Device Research Conference (DRC), Columbus, OH (June 22-24, 2020)
Page Range / eLocation ID:
1 to 2
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recently there has been renewed interest in resonant tunnel diodes (RTD) owing to the demonstration of repeatable room temperature negative differential resistance (RT-NDR) [1], [2] and high peak current densities [3] in GaN-based RTDs. While most of the successful demonstrations of RT-NDR have been from device structures grown on low dislocation-density, freestanding (FS) GaN substrates, there have been a few reports of repeatable RT-NDR from GaN-based RTDs grown on GaN templates on sapphire [4], [5], which have significantly higher densities of threading dislocations (TDs) than FS GaN substrates, but much lower cost. Furthermore, due to the large spontaneous and piezoelectric charge found at the heterointerfaces in III-nitrides, GaN-based RTDs, such as the one illustrated in Fig. 1(a), have highly unusual energy band diagrams, even at 0V bias [Fig. 1(b)]. However, observations of RT-NDR in GaN RTDs on GaN templated sapphire substrates have been restricted to devices of very small active area, typically less than 10 μm 2 [4], [5]. 
    more » « less
  2. The optical properties are investigated by spectroscopic characterizations for bilayer InGaAs/GaAs quantum dot (QD) structures consisting of a layer of surface quantum dots (SQDs) separated from a layer of buried quantum dots (BQDs) by different GaAs spacers with thicknesses of 7 nm, 10.5 nm and 70 nm. The coupling from the BQDs to SQDs leads to carrier transfer for the two samples with thin spacers, 7 nm and 10.5 nm, in which QD pairs are obtained while not for the 70 nm spacer sample. The carrier tunneling time is measured to be 0.145 ns and 0.275 ns from BQDs to SQD through the 7 nm and 10.5 nm spacers, respectively. A weak emission band can be observed at the wavelength of ∼ 960 nm, while the excitation intensity dependent PL and PLE spectra show that this is from the wetting layer (WL) of the SQDs. This WL is very important for carrier dynamics in bilayer structures of BQDs and SQDs, including for carrier generation, capture, relaxation, tunneling, and recombination. These results provide useful information for understanding the optical properties of InGaAs SQDs and for using such hybrid structures as building blocks for surface sensing devices.

    more » « less
  3. Abstract

    We have observed the compact H ii region complex nearest to the dynamical center of the Galaxy, G−0.02−0.07, using ALMA in the H42α recombination line, CS J = 2–1, H13CO+J = 1–0, and SiO v = 0, J = 2–1 emission lines, and the 86 GHz continuum emission. The H ii regions HII-A to HII-C in the cluster are clearly resolved into a shell-like feature with a bright half and a dark half in the recombination line and continuum emission. The analysis of the absorption features in the molecular emission lines show that H ii-A, B, and C are located on the near side of the “Galactic center 50 km s−1 molecular cloud” (50MC), but HII-D is located on the far side of it. The electron temperatures and densities ranges are Te = 5150–5920 K and ne = 950–2340 cm−3, respectively. The electron temperatures in the bright half are slightly lower than those in the dark half, while the electron densities in the bright half are slightly higher than those in the dark half. The H ii regions are embedded in the ambient molecular gas. There are some molecular gas components compressed by a C-type shock wave around the H ii regions. From the line width of the H42α recombination line, the expansion velocities of HII-A, HII-B, HII-C, and HII-D are estimated to be Vexp = 16.7, 11.6, 11.1, and 12.1 km s−1, respectively. The expansion timescales of HII-A, HII-B, HII-C, and HII-D are estimated to be tage ≃ 1.4 × 104, 1.7 × 104, 2.0 × 104, and 0.7 × 104 yr, respectively. The spectral types of the central stars from HII-A to HII-D are estimated to be O8V, O9.5V, O9V, and B0V, respectively. These derived spectral types are roughly consistent with the previous radio estimation. The positional relation among the H ii regions, the SiO molecule enhancement area, and Class-I maser spots suggest that a shock wave caused by a cloud–cloud collision propagated along the line from HII-C to HII-A in the 50MC. The shock wave would have triggered the massive star formation.

    more » « less
  4. Abstract

    GaAs‐AlGaAs based nanowire (NW) lasers hold great potential for on‐chip photonic applications, where lasing metrics have steadily improved over the years by optimizing resonator design and surface passivation methods. The factor that will ultimately limit the performance will depend on material properties, such as native‐ or impurity‐induced point defects and their impact on non‐radiative recombination. Here, the role of impurity‐induced point defects on the lasing performance of low‐threshold GaAs(Sb)‐AlGaAs NW‐lasers is evaluated, particularly by exploring Si‐dopants and their associated vacancy complexes. Si‐induced point defects and their self‐compensating nature are identified using correlated atom probe tomography, resonant Raman scattering, and photoluminescence experiments. Under pulsed optical excitation the lasing threshold is remarkably low (<10 µJ cm−2) and insensitive to impurity defects over a wide range of Si doping densities, while excess doping ([Si]>1019 cm−3) imposes increased threshold at low temperature. These characteristics coincide with increased Shockley‐Read‐Hall recombination, reflected by shorter carrier lifetimes, and reduced internal quantum efficiencies (IQE) . Remarkably, despite the lower IQE the presence of self‐compensating Si‐vacancy defects provides an improved temperature stability in lasing threshold with higher characteristic temperature and room‐temperature lasing. These findings highlight an overall large tolerance of lasing metrics to impurity defects in GaAs‐AlGaAs based NW‐lasers.

    more » « less
  5. We report strong light emission from a room-temperature n-type unipolar In0.53Ga0.47As/AlAs double-barrier resonant-tunneling diode (DBRTD) precisely at the In0.53Ga0.47As band-edge near 1650 nm. The emission characteristics are very similar to what we have observed recently in GaN/AlN DBRTDs, both of which suggest that the mechanism for emission is cross-gap electron-hole recombination via resonant- and Zener co-tunneling of electrons, the latter mechanism generating the required holes. Analysis shows that because of the relatively small bandgap, the Zener tunneling probability can be large in this In0.53Ga0.47As/AlAs DBRTD and is a mechanism that may have been overlooked in the longstanding literature. 
    more » « less