skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Near 100% external quantum efficiency 1550-nm broad spectrum photodetector
We report InGaAs/InP based p-i-n photodiodes with an external quantum efficiency (EQE) above 98% from 1510 nm to 1575 nm. For surface normal photodiodes with a diameter of 80 µm, the measured 3-dB bandwidth is 3 GHz. The saturation current is 30.5 mA, with an RF output power of 9.3 dBm at a bias of −17 V at 3 GHz.  more » « less
Award ID(s):
1842641
PAR ID:
10531099
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
2
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 3047
Size(s):
Article No. 3047
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate InGaAs/InAlGaAs/InP waveguide photodiodes on Si3N4with up to 81 GHz 3-dB bandwidth, 0.76 A/W responsivity, and -1.8 dBm and -9 dBm output RF power at 50 GHz and 100 GHz, respectively. 
    more » « less
  2. We demonstrate InGaAs/InP balanced photodiodes onSi3N4waveguides with record-high 3-dB bandwidth of 30 GHz, 0.72 A/W responsivity, and high common mode rejection ratio (CMRR) of 26 dB at 30 GHz. 
    more » « less
  3. Abstract This work examines an additive approach that increases dielectric screening to overcome performance challenges in organic shortwave infrared (SWIR) photodiodes. The role of the high‐permittivity additive, camphoric anhydride, in the exciton dissociation and charge collection processes is revealed through measurements of transient photoconductivity and electrochemical impedance. Dielectric screening reduces the exciton binding energy to increase exciton dissociation efficiency and lowers trap‐assisted recombination loss, in the absence of any morphological changes for two polymer variants. In the best devices, the peak internal quantum efficiency at 1100 nm is increased up to 66%, and the photoresponse extends to 1400 nm. The SWIR photodiodes are integrated into a 4 × 4 pixel imager to demonstrate tissue differentiation and estimate the fat‐to‐muscle ratio through noninvasive spectroscopic analysis. 
    more » « less
  4. Abstract Infrared photodiodes based on organic semiconductors are promising for low‐cost sensors that operate at room temperature. However, their realization remains hampered by poor device efficiency. Here, performance limitations are analyzed by evaluating the mobility‐lifetime products and charge collection efficiency of devices operating in the shortwave infrared with a peak absorption at 1550 nm. Through complementary impedance and current‐voltage measurements on devices with different donor‐to‐acceptor semiconductor ratios, a trade‐off between mobility and recombination time and the need to balance between transport and interfacial charge transfer are observed. Thus, this study revisits the mobility‐lifetime metric to shed new light on charge collection constraints in organic infrared photodiodes. 
    more » « less
  5. Abstract To achieve high detectivity in infrared detectors, it is critical to reduce the device noise. However, for non-crystalline semiconductors, an essential framework is missing to understand and predict the effects of disorder on the dark current. This report presents experimental and modeling studies on the noise current in exemplar organic bulk heterojunction photodiodes, with 10 donor–acceptor combinations spanning wavelength between 800 and 1600 nm. A significant reduction of the noise and higher detectivity were found in devices using non-fullerene acceptors (NFAs) in comparison to those using fullerene derivatives. The low noise in NFA blends was attributed to a sharp drop off in the distribution of bandtail states, as revealed by variable-temperature density-of-states measurements. Taking disorder into account, we developed a general physical model to explain the dependence of thermal noise on the effective bandgap and bandtail spread. The model provides theoretical targets for the maximum detectivity that can be obtained at different detection wavelengths in inherently disordered infrared photodiodes. 
    more » « less