Experimentalists can now generate terapascal pressures in the laboratory, conditions sufficient to alter the structure of atoms and the nature of interatomic bonding ( 1 ). These are the pressures of planets' interiors and origins—7 TPa at Jupiter's center, 4 TPa in the middle of Saturn, 0.36 TPa for Earth's inner core—and planet growth involves impacts that generate pressures into the terapascal range ( 2 ). Understanding materials and their properties at such conditions provides key insights into how planetary bodies form and then evolve over billions of years. On page 1063 of this issue, Fratanduono et al. ( 3 ) establish a new calibration for such experiments, and their pressure-volume relations for gold (Au) and platinum (Pt) can now serve as reliable standards to >1 TPa.
more »
« less
Exoplanets and High Energy Density Plasma Science
Exoplanet science has moved rapidly beyond its initial observational discovery phase with an emerging enterprise of understanding planet formation, evolution, structure and habitability. Understanding conditions in planetary interiors is essential to all of these issues. The evolving state of a planet’s deep interior will determine not only bulk physical characteristics like density and radius but also whetherdynamo and plate tectonics canoccur, both of which may be key to understanding the potential for a rich and detectablebiosphere.But understanding planetary interiors depends on understandingmatter under extreme pressures. This takes researchers into new regimes of physics which in turn, demand new methods. Material underMegabar pressures represents a frontier domain of plasma physics called Warm Dense Matter (WDM) which has recently become accessible via direct laboratory studies. In this white paper we review the state of exoplanet interior studies and the ability of High Energy Density Plasma (HEDP) WDM techniques to address critical open issues.
more »
« less
- Award ID(s):
- 1725178
- PAR ID:
- 10174370
- Date Published:
- Journal Name:
- Baas
- Volume:
- 51
- Issue:
- 3
- ISSN:
- 2468-1083
- Page Range / eLocation ID:
- 36
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cooling white dwarfs (WDs) can yield accurate ages when theoretical cooling models fully account for the physics of the dense plasma of WD interiors. We use MESA to investigate cooling models for a set of massive and ultramassive WDs (0.9–1.3 ) for which previous models have failed to match kinematic age indicators based on Gaia DR2. We find that the WDs in this population can be explained as C/O cores experiencing unexpectedly rapid 22 Ne sedimentation in the strongly liquid interior just prior to crystallization. We propose that this rapid sedimentation is due to the formation of solid clusters of 22 Ne in the liquid C/O background plasma. We show that these heavier solid clusters sink faster than individual 22 Ne ions and enhance the sedimentation heating rate enough to dramatically slow WD cooling. MESA models including our prescription for cluster formation and sedimentation experience cooling delays of ≈4 Gyr on the WD Q branch, alleviating tension between cooling ages and kinematic ages. This same model then predicts cooling delays coinciding with crystallization of 6 Gyr or more in lower-mass WDs (0.6–0.8 ). Such delays are compatible with, and perhaps required by, observations of WD populations in the local 100 pc WD sample and the open cluster NGC 6791. These results motivate new investigations of the physics of strongly coupled C/O/Ne plasma mixtures in the strongly liquid state near crystallization and tests through comparisons with observed WD cooling.more » « less
-
Abstract With the advent of toroidal and double-stage diamond anvil cells (DACs), pressures between 4 and 10 Mbar can be achieved under static compression, however, the ability to explore diverse sample assemblies is limited on these micron-scale anvils. Adapting the toroidal DAC to support larger sample volumes offers expanded capabilities in physics, chemistry, and planetary science: including, characterizing materials in soft pressure media to multi-megabar pressures, synthesizing novel phases, and probing planetary assemblages at the interior pressures and temperatures of super-Earths and sub-Neptunes. Here we have continued the exploration of larger toroidal DAC profiles by iteratively testing various torus and shoulder depths with central culet diameters in the 30–50 µm range. We present a 30 µm culet profile that reached a maximum pressure of 414(1) GPa based on a Pt scale. The 300 K equations of state fit to ourP–Vdata collected on gold and rhenium are compatible with extrapolated hydrostatic equations of state within 1% up to 4 Mbar. This work validates the performance of these large-culet toroidal anvils to > 4 Mbar and provides a promising foundation to develop toroidal DACs for diverse sample loading and laser heating.more » « less
-
Light element alloying in iron is required to explain density deficit and seismic wave velocities in Earth’s core. However, the light element composition of the Earth’s core seems hard to constrain as nearly all light element alloying would reduce the density and sound velocity (elastic moduli). The alloying light elements include oxidizing elements like oxygen and sulfur and reducing elements like hydrogen and carbon, yet their chemical effects in the alloy system are less discussed. Moreover, Fe-X-ray Absorption Near Edge Structure (Fe-XANES) fingerprints have been studied for silicate materials with ferrous and ferric ions, while not many X-ray absorption spectroscopy (XAS) studies have focused on iron alloys, especially at high pressures. To investigate the bonding nature of iron alloys in planetary interiors, we presented X-ray absorption spectroscopy of iron–nitrogen and iron–carbon alloys at high pressures up to 50 GPa. Together with existing literature on iron–carbon, –hydrogen alloys, we analyzed their edge positions and found no significant difference in the degree of oxidation among these alloys. Pressure effects on edge positions were also found negligible. Our theoretical simulation of the valence state of iron, alloyed with S, C, O, N, and P also showed nearly unchanged behavior under pressures up to 300 GPa. This finding indicates that the high pressure bonding of iron alloyed with light elements closely resembles bonding at the ambient conditions. We suggest that the chemical properties of light elements constrain which ones can coexist within iron alloys.more » « less
-
Accurate knowledge of the properties of hydrogen at high compression is crucial for astrophysics (e.g., planetary and stellar interiors, brown dwarfs, atmosphere of compact stars) and laboratory experiments, including inertial confinement fusion. There exists experimental data for the equation of state, conductivity, and Thomson scattering spectra. However, the analysis of the measurements at extreme pressures and temperatures typically involves additional model assumptions, which makes it difficult to assess the accuracy of the experimental data rigorously. On the other hand, theory and modeling have produced extensive collections of data. They originate from a very large variety of models and simulations including path integral Monte Carlo (PIMC) simulations, density functional theory (DFT), chemical models, machine-learned models, and combinations thereof. At the same time, each of these methods has fundamental limitations (fermion sign problem in PIMC, approximate exchange–correlation functionals of DFT, inconsistent interaction energy contributions in chemical models, etc.), so for some parameter ranges accurate predictions are difficult. Recently, a number of breakthroughs in first principles PIMC as well as in DFT simulations were achieved which are discussed in this review. Here we use these results to benchmark different simulation methods. We present an update of the hydrogen phase diagram at high pressures, the expected phase transitions, and thermodynamic properties including the equation of state and momentum distribution. Furthermore, we discuss available dynamic results for warm dense hydrogen, including the conductivity, dynamic structure factor, plasmon dispersion, imaginary-time structure, and density response functions. We conclude by outlining strategies to combine different simulations to achieve accurate theoretical predictions that are based on first principles.more » « less
An official website of the United States government

