skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Calibrating experiments at atom-crushing pressures
Experimentalists can now generate terapascal pressures in the laboratory, conditions sufficient to alter the structure of atoms and the nature of interatomic bonding ( 1 ). These are the pressures of planets' interiors and origins—7 TPa at Jupiter's center, 4 TPa in the middle of Saturn, 0.36 TPa for Earth's inner core—and planet growth involves impacts that generate pressures into the terapascal range ( 2 ). Understanding materials and their properties at such conditions provides key insights into how planetary bodies form and then evolve over billions of years. On page 1063 of this issue, Fratanduono et al. ( 3 ) establish a new calibration for such experiments, and their pressure-volume relations for gold (Au) and platinum (Pt) can now serve as reliable standards to >1 TPa.  more » « less
Award ID(s):
2020249
PAR ID:
10332354
Author(s) / Creator(s):
Date Published:
Journal Name:
Science
Volume:
372
Issue:
6546
ISSN:
0036-8075
Page Range / eLocation ID:
1037 to 1038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Investigating how solid matter behaves at enormous pressures, such as those found in the deep interiors of giant planets, is a great experimental challenge. Over the past decade, computational predictions have revealed that compression to terapascal pressures may bring about counter-intuitive changes in the structure and bonding of solids as quantum mechanical forces grow in influence 1–6 . Although this behaviour has been observed at modest pressures in the highly compressible light alkali metals 7,8 , it has not been established whether it is commonplace among high-pressure solids more broadly. We used shaped laser pulses at the National Ignition Facility to compress elemental Mg up to 1.3 TPa, which is approximately four times the pressure at the Earth’s core. By directly probing the crystal structure using nanosecond-duration X-ray diffraction, we found that Mg changes its crystal structure several times with non-close-packed phases emerging at the highest pressures. Our results demonstrate that phase transformations of extremely condensed matter, previously only accessible through theoretical calculations, can now be experimentally explored. 
    more » « less
  2. Post-consumer polyethylene terephthalate (PET) was hydrolyzed in pure water over a wide range of temperatures (190−400 °C) and pressures (1−35 MPa) to produce terephthalic acid (TPA). Solid or molten PET was subjected to water as a saturated vapor, superheated vapor, saturated liquid, compressed liquid, and supercritical fluid. The highest TPA yields were observed for the hydrolysis of molten PET in saturated liquid water. Isothermal and non-isothermal hydrolysis of PET was also explored. Rapidly heating the reactor contents at about 5−10 °C/s (“fast” hydrolysis) led to high TPA yields, as did isothermal PET hydrolysis, but within 1 min instead of 30 min. Notably, these conditions resulted in the lowest environmental energy impact metric observed to date for uncatalyzed hydrolysis. 
    more » « less
  3. We recently applied carbonic anhydrase (CA) for the rapid catalytic conversion of carbon dioxide to enable the self-healing properties of concrete and in the development of a carbon-negative concrete replacement named Enzymatic Construction Material (ECM). Here, we explore the stability and carbonate generation ability of model molecular mimics of carbonic anhydrase under high pH and elevated temperatures relevant to long-term durability in cementitious and concrete-like materials. Molecular mimics include Zn2+-based organometallic complexes with an aromatic ligand tris(2-pyridylmethyl)amine, TPA, and with an aliphatic ligand cyclen, 1,4,7,10-tetraazacyclododecane. The Zn(TPA) and Zn(cyclen) complexes are stable in aqueous environments at standard pressures ranging from neutral to pH 13 and temperatures up to 120 °C, where CA is inactive. Under the temperature and pH conditions studied, organometallic degradation pathways do not involve the decomposition of either organic ligand but rather the dissociation of the complex that is reversible upon neutralization in the case of Zn(TPA). Zn(cyclen) is stable at high temperatures at pH 12 and above, resembling cementitious conditions for over 365 days with no signs of degradation. Separately, alkaline calcium-containing solutions with either 25 nM CA or 5 mM Zn(cyclen) catalyst demonstrated accelerated pH decreases compared to catalyst-free controls upon sparging with carbon dioxide because of the conversion of CO2 and H2O to HCO3– and H+. Notably, the inclusion of sub-molar concentrations of detergents, such as sodium dodecyl sulfate, in carbonate production reactions demonstrated no change in the reactivity of control solutions or those with the Zn(cyclen) catalyst but severely attenuated the conversion in CA-containing solutions concomitant with CA denaturation and loss of enzymatic activity. 
    more » « less
  4. Herein, we report structural, computational, and conductivity studies on urea-directed self-assembled iodinated triphenylamine (TPA) derivatives. Despite numerous reports of conductive TPAs, the challenges of correlating their solid-state assembly with charge transport properties hinder the efficient design of new materials. In this work, we compare the assembled structures of a methylene urea bridged dimer of di-iodo TPA (1) and the corresponding methylene urea di-iodo TPA monomer (2) with a di-iodo mono aldehyde (3) control. These modifications lead to needle shaped crystals for 1 and 2 that are organized by urea hydrogen bonding, π⋯π stacking, I⋯I, and I⋯π interactions as determined by SC-XRD, Hirshfeld surface analysis, and X-ray photoelectron spectroscopy (XPS). The long needle shaped crystals were robust enough to measure the conductivity by two contact probe methods with 2 exhibiting higher conductivity values (∼6 × 10 −7 S cm −1 ) compared to 1 (1.6 × 10 −8 S cm −1 ). Upon UV-irradiation, 1 formed low quantities of persistent radicals with the simple methylurea 2 displaying less radical formation. The electronic properties of 1 were further investigated using valence band XPS, which revealed a significant shift in the valence band upon UV irradiation (0.5–1.9 eV), indicating the potential of these materials as dopant free p-type hole transporters. The electronic structure calculations suggest that the close packing of TPA promotes their electronic coupling and allows effective charge carrier transport. Our results show that ionic additives significantly improve the conductivity up to ∼2.0 × 10 −6 S cm −1 in thin films, enabling their implementation in functional devices such as perovskite or solid-state dye sensitized solar cells. 
    more » « less
  5. null (Ed.)
    Abstract 3D printing in the textile and fashion industry is a new emerging technology. Applications of 3D printing for designing clothes and other wearable accessories require tribological and biological understanding of 3D printing plastics against the complex human skin to mitigate skin-friction related ailments such as calluses and blisters. This study provides tribological insight in search of an optimal 3D printable material that has minimal friction against the skin. Two low friction 3D printable materials, thermoplastic polyurethane (TPU) and polyamide (TPA) were chosen and tribological testing was carried out against a water responsive skin model. The skin model was synthesized using a gelatine based model made with cotton and crosslinked with glutaraldehyde. Tribological testing of TPU/TPA against the skin model in dry and wet conditions were made. The higher coefficient of friction (COF) was observed in the wet condition compared to the dry condition. To overcome the higher friction, TPA/TPU-sodium polyacrylate composites were prepared by heat pressing that significantly reduced COF of TPU and TPA by ∼ 40% and 75%, respectively, in wet conditions. 
    more » « less