skip to main content


Title: Galaxy formation with BECDM – II. Cosmic filaments and first galaxies
ABSTRACT Bose–Einstein condensate dark matter (BECDM, also known as fuzzy dark matter) is motivated by fundamental physics and has recently received significant attention as a serious alternative to the established cold dark matter (CDM) model. We perform cosmological simulations of BECDM gravitationally coupled to baryons and investigate structure formation at high redshifts (z ≳ 5) for a boson mass m = 2.5 × 10−22 eV, exploring the dynamical effects of its wavelike nature on the cosmic web and the formation of first galaxies. Our BECDM simulations are directly compared to CDM as well as to simulations where the dynamical quantum potential is ignored and only the initial suppression of the power spectrum is considered – a warm dark matter-like (‘WDM’) model often used as a proxy for BECDM. Our simulations confirm that ‘WDM’ is a good approximation to BECDM on large cosmological scales even in the presence of the baryonic feedback. Similarities also exist on small scales, with primordial star formation happening both in isolated haloes and continuously along cosmic filaments; the latter effect is not present in CDM. Global star formation and metal enrichment in these first galaxies are delayed in BECDM/‘WDM’ compared to the CDM case: in BECDM/‘WDM’ first stars form at z ∼ 13/13.5, while in CDM star formation starts at z ∼ 35. The signature of BECDM interference, not present in ‘WDM’, is seen in the evolved dark matter power spectrum: although the small-scale structure is initially suppressed, power on kpc scales is added at lower redshifts. Our simulations lay the groundwork for realistic simulations of galaxy formation in BECDM.  more » « less
Award ID(s):
1752913 1910346
NSF-PAR ID:
10174814
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
494
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2027 to 2044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Using high-resolution cosmological radiation-hydrodynamic (RHD) simulations (thesan-hr), we explore the impact of alternative dark matter (altDM) models on galaxies during the Epoch of Reionization. The simulations adopt the IllustrisTNG galaxy formation model. We focus on altDM models that exhibit small-scale suppression of the matter power spectrum, namely warm dark matter (WDM), fuzzy dark matter (FDM), and interacting dark matter (IDM) with strong dark acoustic oscillations (sDAO). In altDM scenarios, both the halo mass functions and the ultraviolet luminosity functions at z ≳ 6 are suppressed at the low-mass/faint end, leading to delayed global star formation and reionization histories. However, strong non-linear effects enable altDM models to ‘catch up’ with cold dark matter (CDM) in terms of star formation and reionization. The specific star formation rates are enhanced in halos below the half-power mass in altDM models. This enhancement coincides with increased gas abundance, reduced gas depletion times, more compact galaxy sizes, and steeper metallicity gradients at the outskirts of the galaxies. These changes in galaxy properties can help disentangle altDM signatures from a range of astrophysical uncertainties. Meanwhile, it is the first time that altDM models have been studied in RHD simulations of galaxy formation. We uncover significant systematic uncertainties in reionization assumptions on the faint-end luminosity function. This underscores the necessity of accurately modeling the small-scale morphology of reionization in making predictions for the low-mass galaxy population. Upcoming James Webb Space Telescope imaging surveys of deep lensed fields hold potential for uncovering the faint low-mass galaxy population, which could provide constraints on altDM models.

     
    more » « less
  2. ABSTRACT

    The formation of the first galaxies during cosmic dawn and reionization (at redshifts z = 5–30), triggered the last major phase transition of our universe, as hydrogen evolved from cold and neutral to hot and ionized. The 21-cm line of neutral hydrogen will soon allow us to map these cosmic milestones and study the galaxies that drove them. To aid in interpreting these observations, we upgrade the publicly available code 21cmFAST. We introduce a new, flexible parametrization of the additive feedback from: an inhomogeneous, H2-dissociating (Lyman–Werner; LW) background; and dark matter – baryon relative velocities; which recovers results from recent, small-scale hydrodynamical simulations with both effects. We perform a large, ‘best-guess’ simulation as the 2021 installment of the Evolution of 21-cm Structure (EOS) project. This improves the previous release with a galaxy model that reproduces the observed UV luminosity functions (UVLFs), and by including a population of molecular-cooling galaxies. The resulting 21-cm global signal and power spectrum are significantly weaker, primarily due to a more rapid evolution of the star formation rate density required to match the UVLFs. Nevertheless, we forecast high signal-to-noise detections for both HERA and the SKA. We demonstrate how the stellar-to-halo mass relation of the unseen, first galaxies can be inferred from the 21-cm evolution. Finally, we show that the spatial modulation of X-ray heating due to relative velocities provides a unique acoustic signature that is detectable at z ≈ 10–15 in our fiducial model. Ours are the first public simulations with joint inhomogeneous LW and relative-velocity feedback across the entire cosmic dawn and reionization, and we make them available at this link https://scholar.harvard.edu/julianbmunoz/eos-21.

     
    more » « less
  3. ABSTRACT We present a suite of FIRE-2 cosmological zoom-in simulations of isolated field dwarf galaxies, all with masses of $M_{\rm halo} \approx 10^{10}\, {\rm M}_{\odot }$ at z = 0, across a range of dark matter models. For the first time, we compare how both self-interacting dark matter (SIDM) and/or warm dark matter (WDM) models affect the assembly histories as well as the central density structure in fully hydrodynamical simulations of dwarfs. Dwarfs with smaller stellar half-mass radii (r1/2 < 500 pc) have lower σ⋆/Vmax ratios, reinforcing the idea that smaller dwarfs may reside in haloes that are more massive than is naively expected. The majority of dwarfs simulated with self-interactions actually experience contraction of their inner density profiles with the addition of baryons relative to the cores produced in dark-matter-only runs, though the simulated dwarfs are always less centrally dense than in ΛCDM. The V1/2–r1/2 relation across all simulations is generally consistent with observations of Local Field dwarfs, though compact objects such as Tucana provide a unique challenge. Overall, the inclusion of baryons substantially reduces any distinct signatures of dark matter physics in the observable properties of dwarf galaxies. Spatially resolved rotation curves in the central regions (<400 pc) of small dwarfs could provide a way to distinguish between CDM, WDM, and SIDM, however: at the masses probed in this simulation suite, cored density profiles in dwarfs with small r1/2 values can only originate from dark matter self-interactions. 
    more » « less
  4. null (Ed.)
    ABSTRACT We present a suite of baryonic cosmological zoom-in simulations of self-interacting dark matter (SIDM) haloes within the ‘Feedback In Realistic Environment’ (FIRE) project. The three simulated haloes have virial masses of $\sim 10^{12}\, \text{M}_\odot$ at z = 0, and we study velocity-independent self-interaction cross sections of 1 and 10 ${\rm cm^2 \, g^{-1}}$. We study star formation rates and the shape of dark matter density profiles of the parent haloes in both cold dark matter (CDM) and SIDM models. Galaxies formed in the SIDM haloes have higher star formation rates at z ≤ 1, resulting in more massive galaxies compared to the CDM simulations. While both CDM and SIDM simulations show diverse shape of the dark matter density profiles, the SIDM haloes can reach higher and more steep central densities within few kpcs compared to the CDM haloes. We identify a correlation between the build-up of the stars within the half-mass radii of the galaxies and the growth in the central dark matter densities. The thermalization process in the SIDM haloes is enhanced in the presence of a dense stellar component. Hence, SIDM haloes with highly concentrated baryonic profiles are predicted to have higher central dark matter densities than the CDM haloes. Overall, the SIDM haloes are more responsive to the presence of a massive baryonic distribution than their CDM counterparts. 
    more » « less
  5. Abstract

    Dark sector theories naturally lead to multicomponent scenarios for dark matter where a subcomponent can dissipate energy through self-interactions, allowing it to efficiently cool inside galaxies. We present the first cosmological hydrodynamical simulations of Milky Way analogs where the majority of dark matter is collisionless cold dark matter (CDM) but a subcomponent (6%) is strongly dissipative minimal atomic dark matter (ADM). The simulations, implemented inGIZMOand utilizing FIRE-2 galaxy formation physics to model the standard baryonic sector, demonstrate that the addition of even a small fraction of dissipative dark matter can significantly impact galactic evolution despite being consistent with current cosmological constraints. We show that ADM gas with roughly standard model–like masses and couplings can cool to form a rotating “dark disk” with angular momentum closely aligned with the visible stellar disk. The morphology of the disk depends sensitively on the parameters of the ADM model, which affect the cooling rates in the dark sector. The majority of the ADM gas gravitationally collapses into dark “clumps” (regions of black hole or mirror star formation), which form a prominent bulge and a rotating thick disk in the central galaxy. These clumps form early and quickly sink to the inner ∼kiloparsec of the galaxy, affecting the galaxy’s star formation history and present-day baryonic and CDM distributions.

     
    more » « less