skip to main content

Title: Dwarf galaxies in CDM, WDM, and SIDM: disentangling baryons and dark matter physics
ABSTRACT We present a suite of FIRE-2 cosmological zoom-in simulations of isolated field dwarf galaxies, all with masses of $M_{\rm halo} \approx 10^{10}\, {\rm M}_{\odot }$ at z = 0, across a range of dark matter models. For the first time, we compare how both self-interacting dark matter (SIDM) and/or warm dark matter (WDM) models affect the assembly histories as well as the central density structure in fully hydrodynamical simulations of dwarfs. Dwarfs with smaller stellar half-mass radii (r1/2 < 500 pc) have lower σ⋆/Vmax ratios, reinforcing the idea that smaller dwarfs may reside in haloes that are more massive than is naively expected. The majority of dwarfs simulated with self-interactions actually experience contraction of their inner density profiles with the addition of baryons relative to the cores produced in dark-matter-only runs, though the simulated dwarfs are always less centrally dense than in ΛCDM. The V1/2–r1/2 relation across all simulations is generally consistent with observations of Local Field dwarfs, though compact objects such as Tucana provide a unique challenge. Overall, the inclusion of baryons substantially reduces any distinct signatures of dark matter physics in the observable properties of dwarf galaxies. Spatially resolved rotation curves in the central regions (<400 pc) of small dwarfs more » could provide a way to distinguish between CDM, WDM, and SIDM, however: at the masses probed in this simulation suite, cored density profiles in dwarfs with small r1/2 values can only originate from dark matter self-interactions. « less
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1752913 1715216 1715101 1715847
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
962 to 977
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark matter (dSIDM). These simulations utilize the Feedback In Realistic Environments galaxy formation physics, but allow the dark matter to have dissipative self-interactions analogous to standard model forces, parametrized by the self-interaction cross-section per unit mass, (σ/m), and the dimensionless degree of dissipation, 0 < fdiss < 1. We survey this parameter space, including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies with $M_{\rm halo} \sim 10^{10-11}{\, \rm M_\odot }$ and $M_{\ast } \sim 10^{5-8}{\, \rm M_\odot }$. Central density profiles (parametrized as ρ ∝ rα) of simulated dwarfs become cuspy when $(\sigma /m)_{\rm eff} \gtrsim 0.1\, {\rm cm^{2}\, g^{-1}}$ (and fdiss = 0.5 as fiducial). The power-law slopes asymptote to α ≈ −1.5 in low-mass dwarfs independent of cross-section, which arises from a dark matter ‘cooling flow’. Through comparisons with dark matter only simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when $(\sigma /m)_{\rm eff} \ll 0.1\, {\rm cm^{2}\, g^{-1}}$, baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller radii. Simulated galaxies withmore »$(\sigma /m) \gtrsim 10\, {\rm cm^{2}\, g^{-1}}$ and the fiducial fdiss develop significant coherent rotation of dark matter, accompanied by halo deformation, but this is unlike the well-defined thin ‘dark discs’ often attributed to baryon-like dSIDM. The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark matter kinematics and halo concentrations/shapes can differ.« less
  2. null (Ed.)
    ABSTRACT We present a suite of baryonic cosmological zoom-in simulations of self-interacting dark matter (SIDM) haloes within the ‘Feedback In Realistic Environment’ (FIRE) project. The three simulated haloes have virial masses of $\sim 10^{12}\, \text{M}_\odot$ at z = 0, and we study velocity-independent self-interaction cross sections of 1 and 10 ${\rm cm^2 \, g^{-1}}$. We study star formation rates and the shape of dark matter density profiles of the parent haloes in both cold dark matter (CDM) and SIDM models. Galaxies formed in the SIDM haloes have higher star formation rates at z ≤ 1, resulting in more massive galaxies compared to the CDM simulations. While both CDM and SIDM simulations show diverse shape of the dark matter density profiles, the SIDM haloes can reach higher and more steep central densities within few kpcs compared to the CDM haloes. We identify a correlation between the build-up of the stars within the half-mass radii of the galaxies and the growth in the central dark matter densities. The thermalization process in the SIDM haloes is enhanced in the presence of a dense stellar component. Hence, SIDM haloes with highly concentrated baryonic profiles are predicted to have higher central dark matter densities thanmore »the CDM haloes. Overall, the SIDM haloes are more responsive to the presence of a massive baryonic distribution than their CDM counterparts.« less
  3. ABSTRACT Core formation and runaway core collapse in models with self-interacting dark matter (SIDM) significantly alter the central density profiles of collapsed haloes. Using a forward modelling inference framework with simulated data-sets, we demonstrate that flux ratios in quadruple image strong gravitational lenses can detect the unique structural properties of SIDM haloes, and statistically constrain the amplitude and velocity dependence of the interaction cross-section in haloes with masses between 106 and 1010 M⊙. Measurements on these scales probe self-interactions at velocities below $30 \ \rm {km} \ \rm {s^{-1}}$, a relatively unexplored regime of parameter space, complimenting constraints at higher velocities from galaxies and clusters. We cast constraints on the amplitude and velocity dependence of the interaction cross-section in terms of σ20, the cross-section amplitude at $20 \ \rm {km} \ \rm {s^{-1}}$. With 50 lenses, a sample size available in the near future, and flux ratios measured from spatially compact mid-IR emission around the background quasar, we forecast $\sigma _{20} \lt 11\rm {\small {--}}23 \ \rm {cm^2} \rm {g^{-1}}$ at $95 {{\ \rm per\ cent}}$ CI, depending on the amplitude of the subhalo mass function, and assuming cold dark matter (CDM). Alternatively, if $\sigma _{20} = 19.2 \ \rmmore »{cm^2}\rm {g^{-1}}$ we can rule out CDM with a likelihood ratio of 20:1, assuming an amplitude of the subhalo mass function that results from doubly efficient tidal disruption in the Milky Way relative to massive elliptical galaxies. These results demonstrate that strong lensing of compact, unresolved sources can constrain SIDM structure on sub-galactic scales across cosmological distances, and the evolution of SIDM density profiles over several Gyr of cosmic time.« less

    We study a suite of extremely high-resolution cosmological Feedback in Realistic Environments simulations of dwarf galaxies ($M_{\rm halo} \lesssim 10^{10}\rm \, M_{\odot }$), run to z = 0 with $30\, \mathrm{M}_{\odot }$ resolution, sufficient (for the first time) to resolve the internal structure of individual supernovae remnants within the cooling radius. Every halo with $M_{\rm halo} \gtrsim 10^{8.6}\, \mathrm{M}_{\odot }$ is populated by a resolved stellar galaxy, suggesting very low-mass dwarfs may be ubiquitous in the field. Our ultra-faint dwarfs (UFDs; $M_{\ast }\lt 10^{5}\, \mathrm{M}_{\odot }$) have their star formation (SF) truncated early (z ≳ 2), likely by reionization, while classical dwarfs ($M_{\ast }\gt 10^{5}\, \mathrm{M}_{\odot }$) continue forming stars to z < 0.5. The systems have bursty star formation histories, forming most of their stars in periods of elevated SF strongly clustered in both space and time. This allows our dwarf with M*/Mhalo > 10−4 to form a dark matter core ${\gt}200\rm \, pc$, while lower mass UFDs exhibit cusps down to ${\lesssim}100\rm \, pc$, as expected from energetic arguments. Our dwarfs with $M_{\ast }\gt 10^{4}\, \mathrm{M}_{\odot }$ have half-mass radii (R1/2) in agreement with Local Group (LG) dwarfs (dynamical mass versus R1/2 and stellar rotation also resemble observations).more »The lowest mass UFDs are below surface brightness limits of current surveys but are potentially visible in next-generation surveys (e.g. LSST). The stellar metallicities are lower than in LG dwarfs; this may reflect pre-enrichment of the LG by the massive hosts or Pop-III stars. Consistency with lower resolution studies implies that our simulations are numerically robust (for a given physical model).

    « less
  5. ABSTRACT We derive a new mass estimator that relies on internal proper motion measurements of dispersion-supported stellar systems, one that is distinct and complementary to existing estimators for line-of-sight velocities. Starting with the spherical Jeans equation, we show that there exists a radius where the mass enclosed depends only on the projected tangential velocity dispersion, assuming that the anisotropy profile slowly varies. This is well-approximated at the radius where the log-slope of the stellar tracer profile is −2: r−2. The associated mass is $M(r_{-2}) = 2 G^{-1} \langle \sigma _{\mathcal {T}}^{2}\rangle ^{*} r_{-2}$ and the circular velocity is $V^{2}({r_{-2}}) = 2\langle \sigma _{\mathcal {T}}^{2}\rangle ^{*}$. For a Plummer profile r−2 ≃ 4Re/5. Importantly, r−2 is smaller than the characteristic radius for line-of-sight velocities derived by Wolf et al. Together, the two estimators can constrain the mass profiles of dispersion-supported galaxies. We illustrate its applicability using published proper motion measurements of dwarf galaxies Draco and Sculptor, and find that they are consistent with inhabiting cuspy NFW subhaloes of the kind predicted in CDM but we cannot rule out a core. We test our combined mass estimators against previously published, non-spherical cosmological dwarf galaxy simulations done in both cold dark matter (CDM; naturallymore »cuspy profile) and self-interacting dark matter (SIDM; cored profile). For CDM, the estimates for the dynamic rotation curves are found to be accurate to $10\rm { per\, cent}$ while SIDM are accurate to $15\rm { per\, cent}$. Unfortunately, this level of accuracy is not good enough to measure slopes at the level required to distinguish between cusps and cores of the type predicted in viable SIDM models without stronger priors. However, we find that this provides good enough accuracy to distinguish between the normalization differences predicted at small radii (r ≃ r−2 < rcore) for interesting SIDM models. As the number of galaxies with internal proper motions increases, mass estimators of this kind will enable valuable constraints on SIDM and CDM models.« less