skip to main content

Title: Manipulating nonadiabatic conical intersection dynamics by optical cavities
Optical cavities hold great promise to manipulate and control the photochemistry of molecules. We demonstrate how molecular photochemical processes can be manipulated by strong light–matter coupling. For a molecule with an inherent conical intersection, optical cavities can induce significant changes in the nonadiabatic dynamics by either splitting the pristine conical intersections into two novel polaritonic conical intersections or by creating light-induced avoided crossings in the polaritonic surfaces. This is demonstrated by exact real-time quantum dynamics simulations of a three-state two-mode model of pyrazine strongly coupled to a single cavity photon mode. We further explore the effects of external environments through dissipative polaritonic dynamics computed using the hierarchical equation of motion method. We find that cavity-controlled photochemistry can be immune to external environments. We also demonstrate that the polariton-induced changes in the dynamics can be monitored by transient absorption spectroscopy.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Chemical Science
Page Range / eLocation ID:
1290 to 1298
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the Polariton induced conical intersection (PICI) created from coupling a diatomic molecule with the quantized photon mode inside an optical cavity, and the corresponding Berry Phase effects. We use the rigorous Pauli–Fierz Hamiltonian to describe the quantum light-matter interactions between a LiF molecule and the cavity, and use the exact quantum propagation to investigate the polariton quantum dynamics. The molecular rotations relative to the cavity polarization direction play a role as the tuning mode of the PICI, resulting in an effective CI even within a diatomic molecule. To clearly demonstrate the dynamical effects of the Berry phase, we construct two additional models that have the same Born–Oppenheimer surface, but the effects of the geometric phase are removed. We find that when the initial wavefunction is placed in the lower polaritonic surface, the Berry phase causes a π phase-shift in the wavefunction after the encirclement around the CI, indicated from the nuclear probability distribution. On the other hand, when the initial wavefunction is placed in the upper polaritonic surface, the geometric phase significantly influences the couplings between polaritonic states and therefore, the population dynamics between them. These BP effects are further demonstrated through the photo-fragment angular distribution. PICI created from the quantized radiation field has the promise to open up new possibilities to modulate photochemical reactivities. 
    more » « less
  2. Vibrational and electronic strong coupling of light with molecular excitations has shown promise for modifying chemical reaction rates. However, the Tavis–Cummings model often used to model such polaritonic chemistry considers only a single discrete cavity mode coupled with the molecular modes, while experimental systems generally consist of a larger number of molecules in cavities with a continuum of modes. Here, we model the polaritonic effects of multimode cavities of arbitrary dimensions and filled with a large number of molecules. We obtain the dependence of the effects on the dimensionality of the cavity, the molecular oscillator strength, and molecular concentration. Combining our model with the transition state theory, we show that polaritonic effects can be altered by a few orders of magnitude compared to including only a single cavity mode, and that the effect is stronger with a larger molecular dipole moment and molecular concentration. However, the change remains negligibly small for realistic chemical systems due to the large number of dark states.

    more » « less
  3. The application of parity–time (PT) symmetry in optics, especially PT-symmetry breaking, has attracted considerable attention as an approach to controlling light propagation. Here, we report optical limiting by two coupled optical cavities with a PT-symmetric spectrum of reflectionless modes. The optical limiting is related to broken PT symmetry due to light-induced changes in one of the cavities. Our experimental implementation involves a three-mirror resonator of alternating layers of ZnS and cryolite with a PT-symmetric spectral degeneracy of two reflectionless modes. The passive optical limiting is demonstrated by measurements of single 532 nm 6 ns laser pulses and thermo-optical simulations. At fluences below 10mJ/cm2, the multilayer exhibits a flattop passband at 532 nm. At higher fluences, laser heating combined with the thermo-optic effect in ZnS leads to cavity detuning and PT-symmetry breaking of the reflectionless modes. As a result, the entire multilayer structure quickly becomes highly reflective, protecting itself from laser-induced damage. The cavity detuning mechanism can differ at much higher limiting thresholds and include nonlinearity.

    more » « less
  4. By placing Mg-porphyrin molecules in a chiral optical cavity, time reversal symmetry is broken, and polariton ring currents can be generated with linearly polarized light, resulting in a circular dichroism signal. Since the electronic state degeneracy in the molecule is lifted by the formation of chiral polaritons, this signal is one order of magnitude stronger than the bare molecule signal induced by circularly polarized light. Enantiomer-selective photochemical processes in chiral optical cavities is an intriguing future possibility. 
    more » « less
  5. Abstract

    Experiments have suggested that strong interactions between molecular ensembles and infrared microcavities can be employed to control chemical equilibria. Nevertheless, the primary mechanism and key features of the effect remain largely unexplored. In this work, we develop a theory of chemical equilibrium in optical microcavities, which allows us to relate the equilibrium composition of a mixture in different electromagnetic environments. Our theory shows that in planar microcavities under strong coupling with polyatomic molecules, hybrid modes formed between all dipole-active vibrations and cavity resonances contribute to polariton-assisted chemical equilibrium shifts. To illustrate key aspects of our formalism, we explore a model SN2 reaction within a single-mode infrared resonator. Our findings reveal that chemical equilibria can be shifted towards either direction of a chemical reaction, depending on the oscillator strength and frequencies of reactant and product normal modes. Polariton-induced zero-point energy changes provide the dominant contributions, though the effects in idealized single-mode cavities tend to diminish quickly as the temperature and number of molecules increase. Our approach is valid in generic electromagnetic environments and paves the way for understanding and controlling chemical equilibria with microcavities.

    more » « less