skip to main content


Title: Children use inverse planning to detect social transmission in design of artifacts
Do children use objects to infer the people and actions that created them? We ask how children judge whether designs were socially transmitted (copied), asking if children use a simple perceptual heuristic (more similar = more likely copied), or make a rational, flexible inference (Bayesian inverse planning). We found evidence that children use inverse planning to reason about artifacts’ designs: When children saw two identical designs, they did not always infer copying occurred. Instead, similarity was weaker evidence of copying when an alternative explanation ‘explained away’ the similarity. Thus, children inferred copying had occurred less often when designs were efficient (Exp1, age 7-9; N=52), and when there was a constraint that limited the number of possible designs (Exp2, age 4-5; N=160). When thinking about artifacts, young children go beyond perceptual features and use a process like inverse planning to reason about the generative processes involved in design.  more » « less
Award ID(s):
1749551
NSF-PAR ID:
10174908
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Annual Conference of the Cognitive Science Society
ISSN:
1069-7977
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. How do people use human-made objects (artifacts) to learn about the people and actions that created them? We test the richness of people’s reasoning in this domain, focusing on the task of judging whether social transmission has occurred (i.e. whether one person copied another). We develop a formal model of this reasoning process as a form of rational inverse planning, which predicts that rather than solely focusing on artifacts’ similarity to judge whether copying occurred, people should also take into account availability constraints (the materials available), and functional constraints (which materials work). Using an artifact-building task where two characters build tools to solve a puzzle box, we find that this inverse planning model predicts trial-by-trial judgments, whereas simpler models that do not consider availability or functional constraints do not. This suggests people use a process like inverse planning to make flexible inferences from artifacts’ features about the source of design ideas. 
    more » « less
  2. Human childhood is characterized by dramatic changes in the mind and brain. However, little is known about the large-scale intrinsic cortical network changes that occur during childhood because of methodological challenges in scanning young children. Here, we overcome this barrier by using sophisticated acquisition and analysis tools to investigate functional network development in children between the ages of 4 and 10 years (n=92; 50 female, 42 male). At multiple spatial scales, age is positively associated with brain network segregation. At the system level, age was associated with segregation of systems involved in attention from those involved in abstract cognition, and with integration among attentional and perceptual systems. Associations between age and functional connectivity are most pronounced in visual and medial prefrontal cortex, the two ends of a gradient from perceptual, externally oriented cortex to abstract, internally oriented cortex. These findings suggest that both ends of the sensory-association gradient may develop early, in contrast to the classical theories that cortical maturation proceeds from back to front, with sensory areas developing first and association areas developing last. More mature patterns of brain network architecture, controlling for age, were associated with better visuospatial reasoning abilities. Our results suggest that as cortical architecture becomes more specialized, children become more able to reason about the world and their place in it.

    SIGNIFICANCE STATEMENTAnthropologists have called the transition from early to middle childhood the “age of reason”, when children across cultures become more independent. We employ cutting-edge neuroimaging acquisition and analysis approaches to investigate associations between age and functional brain architecture in childhood. Age was positively associated with segregation between cortical systems that process the external world and those that process abstract phenomena like the past, future, and minds of others. Surprisingly, we observed pronounced development at both ends of the sensory-association gradient, challenging the theory that sensory areas develop first and association areas develop last. Our results open new directions for research into how brains reorganize to support rapid gains in cognitive and socioemotional skills as children reach the age of reason.

     
    more » « less
  3. Abstract Research Highlights

    Children in our sample extracted patterns from an agent's positive social choices between multiple groups to reason about groups’ relative social standing.

    Children used the pattern of an agent's positive social choices to guide their reasoning about which groups were likely to be “leaders” and “helpers” in a fictional town.

    The pattern that emerged in an agent's choices of friends shaped children's thinking about groups’ relativesocialbut notphysicalpower.

    Children tracked social choices to reason about group‐based hierarchies at the individual level (which groups an agent prefers) and societal level (which groups are privileged).

     
    more » « less
  4. Fitch, T. ; Lamm, C. ; Leder, H. ; Teßmar-Raible, K. (Ed.)
    Artifacts – the objects we own, make, and choose – provide a source of rich social information. Adults use people’s artifacts to judge others’ traits, interests, and social affiliations. Here we show that 4-year-old children (N=32) infer others’ shared interests from their artifacts. When asked who had the same interests as a target character, children chose the character with a conceptually similar object to the target’s – an object used for the same activity – over a character with a perceptually similar object. When asked which person had the same arbitrary property (bedtime, birthday, or middle name), children did not systematically select either character, and most often reported that they did not know. Adults (N=32) made similar inferences, but differed in their tendency to use artifacts to infer friendships. Overall, by age 4, children show a sophisticated ability to make selective, warranted inferences about others’ interests based solely on their artifacts. 
    more » « less
  5. How do children’s representations of object categories change as they grow older? As they learn about the world around them, they also express what they know in the drawings they make. Here, we examine drawings as a window into how children represent familiar object categories, and how this changes across childhood. We asked children (age 3-10 years) to draw familiar object categories on an iPad. First, we analyzed their semantic content, finding large and consistent gains in how well children could produce drawings that are recognizable to adults. Second, we quantified their perceptual similarity to adult drawings using a pre-trained deep convolutional neural network, allowing us to visualize the representational layout of object categories across age groups using a common feature basis. We found that the organization of object categories in older children’s drawings were more similar to that of adults than younger children’s drawings. This correspondence was strong in the final layers of the neural network, showing that older children’s drawings tend to capture the perceptual features critical for adult recognition. We hypothesize that this improvement reflects increasing convergence between children’s representations of object categories and that of adults; future work will examine how these age-related changes relate to children’s developing perceptual and motor capacities. Broadly, these findings point to drawing as a rich source of insight into how children represent object concepts. 
    more » « less