skip to main content


Title: Drawings as a window into developmental changes in object representations
How do children’s representations of object categories change as they grow older? As they learn about the world around them, they also express what they know in the drawings they make. Here, we examine drawings as a window into how children represent familiar object categories, and how this changes across childhood. We asked children (age 3-10 years) to draw familiar object categories on an iPad. First, we analyzed their semantic content, finding large and consistent gains in how well children could produce drawings that are recognizable to adults. Second, we quantified their perceptual similarity to adult drawings using a pre-trained deep convolutional neural network, allowing us to visualize the representational layout of object categories across age groups using a common feature basis. We found that the organization of object categories in older children’s drawings were more similar to that of adults than younger children’s drawings. This correspondence was strong in the final layers of the neural network, showing that older children’s drawings tend to capture the perceptual features critical for adult recognition. We hypothesize that this improvement reflects increasing convergence between children’s representations of object categories and that of adults; future work will examine how these age-related changes relate to children’s developing perceptual and motor capacities. Broadly, these findings point to drawing as a rich source of insight into how children represent object concepts.  more » « less
Award ID(s):
1714726
NSF-PAR ID:
10128363
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 40th Annual Conference of the Cognitive Science Society.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. How do children’s visual concepts change across childhood, and how might these changes be reflected in their drawings? Here we investigate developmental changes in children’s ability to emphasize the relevant visual distinctions between object categories in their drawings. We collected over 13K drawings from children aged 2-10 years via a free-standing drawing station in a children’s museum. We hypothesized that older children would produce more recognizable drawings, and that this gain in recognizability would not be entirely explained by concurrent development in visuomotor control. To measure recognizability, we applied a pretrained deep convolutional neural network model to extract a high-level feature representation of all drawings, and then trained a multi-way linear classifier on these features. To measure visuomotor control, we developed an automated procedure to measure their ability to accurately trace complex shapes. We found consistent gains in the recognizability of drawings across ages that were not fully explained by children’s ability to accurately trace complex shapes. Furthermore, these gains were accompanied by an increase in how distinct different object categories were in feature space. Overall, these results demonstrate that children’s drawings include more distinctive visual features as they grow older. 
    more » « less
  2. Abstract Research Highlights

    Children and adults conceptually and perceptually categorize speech and song from age 4.

    Listeners use F0 instability, harmonicity, spectral flux, and utterance duration to determine whether vocal stimuli sound like song.

    Acoustic cue weighting changes with age, becoming adult‐like at age 8 for perceptual categorization and at age 12 for conceptual differentiation.

    Young children are still learning to categorize speech and song, which leaves open the possibility that music‐ and language‐specific skills are not so domain‐specific.

     
    more » « less
  3. Abstract

    Most adults are better at recognizing recently encountered faces of their own race, relative to faces of other races. In adults, this race effect in face recognition is associated with differential neural representations of own‐ and other‐race faces in the fusiform face area (FFA), a high‐level visual region involved in face recognition. Previous research has linked these differential face representations in adults to viewers’ implicit racial associations. However, despite the fact that the FFA undergoes a gradual development which continues well into adulthood, little is known about the developmental time‐course of the race effect in FFA responses. Also unclear is how this race effect might relate to the development of face recognition or implicit associations with own‐ or other‐races during childhood and adolescence. To examine the developmental trajectory of these race effects, in a cross‐sectional study of European American (EA) children (ages 7–11), adolescents (ages 12–16) and adults (ages 18–35), we evaluated responses to adult African American (AA) and EA face stimuli, using functional magnetic resonance imaging and separate behavioral measures outside the scanner. We found that FFA responses to AA and EA faces differentiated during development from childhood into adulthood; meanwhile, the magnitudes of race effects increased in behavioral measures of face‐recognition and implicit racial associations. These three race effects were positively correlated, even after controlling for age. These findings suggest that social and perceptual experiences shape a protracted development of the race effect in face processing that continues well into adulthood.

     
    more » « less
  4. Many goal-directed actions that require rapid visuomotor planning and perceptual decision-making are affected in older adults, causing difficulties in execution of many functional activities of daily living. Visuomotor planning and perceptual identification are mediated by the dorsal and ventral visual streams, respectively, but it is unclear how age-induced changes in sensory processing in these streams contribute to declines in visuomotor decision-making performance. Previously, we showed that in young adults, task demands influenced movement strategies during visuomotor decision-making, reflecting differential integration of sensory information between the two streams. Here, we asked the question if older adults would exhibit deficits in interactions between the two streams during demanding motor tasks. Older adults ( n = 15) and young controls ( n = 26) performed reaching or interception movements toward virtual objects. In some blocks of trials, participants also had to select an appropriate movement goal based on the shape of the object. Our results showed that older adults corrected fewer initial decision errors during both reaching and interception movements. During the interception decision task, older adults made more decision- and execution-related errors than young adults, which were related to early initiation of their movements. Together, these results suggest that older adults have a reduced ability to integrate new perceptual information to guide online action, which may reflect impaired ventral-dorsal stream interactions. NEW & NOTEWORTHY Older adults show declines in vision, decision-making, and motor control, which can lead to functional limitations. We used a rapid visuomotor decision task to examine how these deficits may interact to affect task performance. Compared with healthy young adults, older adults made more errors in both decision-making and motor execution, especially when the task required intercepting moving targets. This suggests that age-related declines in integrating perceptual and motor information may contribute to functional deficits. 
    more » « less
  5. Young children tend to prioritize objects over layouts in their drawings, often juxtaposing “floating” objects in the picture plane instead of grounding those objects in drawn representations of the extended layout. In the present study, we explore whether implicitly directing children’s attention to elements of the extended layout through a drawing’s communicative goal—to indicate the location of a hidden target to someone else—might lead children to draw more layout information. By comparing children’s drawings to a different group of children’s verbal descriptions, moreover, we explore how communicative medium affects children’s inclusion of layout and object information. If attention modulates children’s symbolic communication about layouts and objects, then children should both draw and talk about layouts and objects when they are relevant to the communicative task. If there are challenges or advantages specific to either medium, then children might treat layouts and objects differently when drawing versus describing them. We find evidence for both of these possibilities: Attention affects what children include in symbolic communication, like drawings and language, but children are more concise in their inclusion of relevant layout or object information in language versus drawings. 
    more » « less