How do children’s visual concepts change across childhood, and how might these changes be reflected in their drawings? Here we investigate developmental changes in children’s ability to emphasize the relevant visual distinctions between object categories in their drawings. We collected over 13K drawings from children aged 2-10 years via a free-standing drawing station in a children’s museum. We hypothesized that older children would produce more recognizable drawings, and that this gain in recognizability would not be entirely explained by concurrent development in visuomotor control. To measure recognizability, we applied a pretrained deep convolutional neural network model to extract a high-level feature representation of all drawings, and then trained a multi-way linear classifier on these features. To measure visuomotor control, we developed an automated procedure to measure their ability to accurately trace complex shapes. We found consistent gains in the recognizability of drawings across ages that were not fully explained by children’s ability to accurately trace complex shapes. Furthermore, these gains were accompanied by an increase in how distinct different object categories were in feature space. Overall, these results demonstrate that children’s drawings include more distinctive visual features as they grow older. 
                        more » 
                        « less   
                    
                            
                            Drawings as a window into developmental changes in object representations
                        
                    
    
            How do children’s representations of object categories change as they grow older? As they learn about the world around them, they also express what they know in the drawings they make. Here, we examine drawings as a window into how children represent familiar object categories, and how this changes across childhood. We asked children (age 3-10 years) to draw familiar object categories on an iPad. First, we analyzed their semantic content, finding large and consistent gains in how well children could produce drawings that are recognizable to adults. Second, we quantified their perceptual similarity to adult drawings using a pre-trained deep convolutional neural network, allowing us to visualize the representational layout of object categories across age groups using a common feature basis. We found that the organization of object categories in older children’s drawings were more similar to that of adults than younger children’s drawings. This correspondence was strong in the final layers of the neural network, showing that older children’s drawings tend to capture the perceptual features critical for adult recognition. We hypothesize that this improvement reflects increasing convergence between children’s representations of object categories and that of adults; future work will examine how these age-related changes relate to children’s developing perceptual and motor capacities. Broadly, these findings point to drawing as a rich source of insight into how children represent object concepts. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1714726
- PAR ID:
- 10128363
- Date Published:
- Journal Name:
- Proceedings of the 40th Annual Conference of the Cognitive Science Society.
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Childhood is marked by the rapid accumulation of knowledge and the prolific production of drawings. We conducted a systematic study of how children create and recognize line drawings of visual concepts. We recruited 2-10-year-olds to draw 48 categories via a kiosk at a children’s museum, resulting in >37K drawings. We analyze changes in the category-diagnostic information in these drawings using vision algorithms and annotations of object parts. We find developmental gains in children’s inclusion of category-diagnostic information that are not reducible to variation in visuomotor control or effort. Moreover, even unrecognizable drawings contain information about the animacy and size of the category children tried to draw. Using guessing games at the same kiosk, we find that children improve across childhood at recognizing each other’s line drawings. This work leverages vision algorithms to characterize developmental changes in children’s drawings and suggests that these changes reflect refinements in children’s internal representations.more » « less
- 
            Young children tend to prioritize objects over layouts in their drawings, often juxtaposing “floating” objects in the picture plane instead of grounding those objects in drawn representations of the extended layout. In the present study, we explore whether implicitly directing children’s attention to elements of the extended layout through a drawing’s communicative goal—to indicate the location of a hidden target to someone else—might lead children to draw more layout information. By comparing children’s drawings to a different group of children’s verbal descriptions, moreover, we explore how communicative medium affects children’s inclusion of layout and object information. If attention modulates children’s symbolic communication about layouts and objects, then children should both draw and talk about layouts and objects when they are relevant to the communicative task. If there are challenges or advantages specific to either medium, then children might treat layouts and objects differently when drawing versus describing them. We find evidence for both of these possibilities: Attention affects what children include in symbolic communication, like drawings and language, but children are more concise in their inclusion of relevant layout or object information in language versus drawings.more » « less
- 
            Many goal-directed actions that require rapid visuomotor planning and perceptual decision-making are affected in older adults, causing difficulties in execution of many functional activities of daily living. Visuomotor planning and perceptual identification are mediated by the dorsal and ventral visual streams, respectively, but it is unclear how age-induced changes in sensory processing in these streams contribute to declines in visuomotor decision-making performance. Previously, we showed that in young adults, task demands influenced movement strategies during visuomotor decision-making, reflecting differential integration of sensory information between the two streams. Here, we asked the question if older adults would exhibit deficits in interactions between the two streams during demanding motor tasks. Older adults ( n = 15) and young controls ( n = 26) performed reaching or interception movements toward virtual objects. In some blocks of trials, participants also had to select an appropriate movement goal based on the shape of the object. Our results showed that older adults corrected fewer initial decision errors during both reaching and interception movements. During the interception decision task, older adults made more decision- and execution-related errors than young adults, which were related to early initiation of their movements. Together, these results suggest that older adults have a reduced ability to integrate new perceptual information to guide online action, which may reflect impaired ventral-dorsal stream interactions. NEW & NOTEWORTHY Older adults show declines in vision, decision-making, and motor control, which can lead to functional limitations. We used a rapid visuomotor decision task to examine how these deficits may interact to affect task performance. Compared with healthy young adults, older adults made more errors in both decision-making and motor execution, especially when the task required intercepting moving targets. This suggests that age-related declines in integrating perceptual and motor information may contribute to functional deficits.more » « less
- 
            Researchers support race, gender, and age diverse groups of people to create with maker electronics. These groups include older adults, who are often overlooked as not interested or capable of learning new technologies due to ageist stereotypes. One approach, often involving e-textiles, leverages crafting as a bridge to broaden participation in making. We investigated ways to broaden participation in maker electronics for older adults by remotely co-designing e-textile projects with 6 older adult crafters over the course of 5 workshop sessions for a total of 45 hours. We developed a deeper understanding of their practices, identifying a Planner-Improviser Spectrum for how they approached their craft, and created medium fdelity prototypes. Our design implications draw on our participants’ crafting experience and their experience in the workshop to highlight what e-textile toolkit designers can learn from skilled older adult crafters, such as selecting familiar materials, supporting aesthetic goals, and making electronics more attainable.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    