We design fast algorithms for repeatedly sampling from strongly Rayleigh distributions, which include as special cases random spanning tree distributions and determinantal point processes. For a graph $G=(V, E)$, we show how to approximately sample uniformly random spanning trees from $G$ in $\widetilde{O}(\lvert V\rvert)$\footnote{Throughout, $\widetilde{O}(\cdot)$ hides polylogarithmic factors in $n$.} time per sample after an initial $\widetilde{O}(\lvert E\rvert)$ time preprocessing. This is the first nearly-linear runtime in the output size, which is clearly optimal. For a determinantal point process on $k$-sized subsets of a ground set of $n$ elements, defined via an $n\times n$ kernel matrix, we show how to approximately sample in $\widetilde{O}(k^\omega)$ time after an initial $\widetilde{O}(nk^{\omega-1})$ time preprocessing, where $\omega<2.372864$ is the matrix multiplication exponent. The time to compute just the weight of the output set is simply $\simeq k^\omega$, a natural barrier that suggests our runtime might be optimal for determinantal point processes as well. As a corollary, we even improve the state of the art for obtaining a single sample from a determinantal point process, from the prior runtime of $\widetilde{O}(\min\{nk^2, n^\omega\})$ to $\widetilde{O}(nk^{\omega-1})$. In our main technical result, we achieve the optimal limit on domain sparsification for strongly Rayleigh distributions. In domain sparsification, samplingmore »
Sampling from Discrete Distributions in Combinational Hardware with Application to Post-Quantum Cryptography
Random values from discrete distributions are typically generated from uniformly-random samples. A common technique is to use a cumulative distribution table (CDT) lookup for inversion sampling, but it is also possible to use Boolean functions to map a uniformly-random bit sequence into a value from a discrete distribution. This work presents a methodology for deriving such functions for any discrete distribution, encoding them in VHDL for implementation in combinational hardware, and (for moderate precision and sample space size) confirming the correctness of the produced distribution. The process is demonstrated using a discrete Gaussian distribution with a small sample space, but it is applicable to any discrete distribution with fixed parameters. Results are presented for sampling schemes from several submissions to the NIST PQC standardization process, comparing this method to CDT lookups on a Xilinx Artix-7 FPGA. The process produces compact solutions for distributions up to moderate size and precision.
- Award ID(s):
- 1801512
- Publication Date:
- NSF-PAR ID:
- 10174990
- Journal Name:
- 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France
- Page Range or eLocation-ID:
- 610 to 613
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Consider an algorithm performing a computation on a huge random object (for example a random graph or a "long" random walk). Is it necessary to generate the entire object prior to the computation, or is it possible to provide query access to the object and sample it incrementally "on-the-fly" (as requested by the algorithm)? Such an implementation should emulate the random object by answering queries in a manner consistent with an instance of the random object sampled from the true distribution (or close to it). This paradigm is useful when the algorithm is sub-linear and thus, sampling the entire object up front would ruin its efficiency. Our first set of results focus on undirected graphs with independent edge probabilities, i.e. each edge is chosen as an independent Bernoulli random variable. We provide a general implementation for this model under certain assumptions. Then, we use this to obtain the first efficient local implementations for the Erdös-Rényi G(n,p) model for all values of p, and the Stochastic Block model. As in previous local-access implementations for random graphs, we support Vertex-Pair and Next-Neighbor queries. In addition, we introduce a new Random-Neighbor query. Next, we give the first local-access implementation for All-Neighbors queries inmore »
-
Deep Generative Networks (DGNs) are extensively employed in Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and their variants to approximate the data manifold and distribution. However, training samples are often distributed non-uniformly on the manifold, due to the cost or convenience of collection. For example, the CelebA dataset contains a large fraction of smiling faces. These inconsistencies will be reproduced when sampling from the trained DGN, which is not always preferred, e.g., for fairness or data augmentation. In response, we develop MaGNET, a novel and theoretically motivated latent space sampler for any pre-trained DGN that produces samples uniformly distributed on the learned manifold. We perform a range of experiments on several datasets and DGNs, e.g., for the state-of-the-art StyleGAN2 trained on the FFHQ dataset, uniform sampling via MaGNET increases distribution precision by 4.1% and recall by 3.0% and decreases gender bias by 41.2%, without requiring labels or retraining. Since uniform sample distribution does not imply uniform semantic distribution, we also explore how semantic attributes of generated samples vary under MaGNET sampling. Colab and codes at bit.ly/magnet-sampling
-
In many situations, sample data is obtained from a noisy or imperfect source. In order to address such corruptions, this paper introduces the concept of a sampling corrector. Such algorithms use structure that the distribution is purported to have, in order to allow one to make “on-the-fly” corrections to samples drawn from probability distributions. These algorithms then act as filters between the noisy data and the end user. We show connections between sampling correctors, distribution learning algorithms, and distribution property testing algorithms. We show that these connections can be utilized to expand the applicability of known distribution learning and property testing algorithms as well as to achieve improved algorithms for those tasks. As a first step, we show how to design sampling correctors using proper learning algorithms. We then focus on the question of whether algorithms for sampling correctors can be more efficient in terms of sample complexity than learning algorithms for the analogous families of distributions. When correcting monotonicity, we show that this is indeed the case when also granted query access to the cumulative distribution function. We also obtain sampling correctors for monotonicity even without this stronger type of access, provided that the distribution be originally very closemore »
-
We introduce a notion called entropic independence that is an entropic analog of spectral notions of high-dimensional expansion. Informally, entropic independence of a background distribution $\mu$ on $k$-sized subsets of a ground set of elements says that for any (possibly randomly chosen) set $S$, the relative entropy of a single element of $S$ drawn uniformly at random carries at most $O(1/k)$ fraction of the relative entropy of $S$. Entropic independence is the analog of the notion of spectral independence, if one replaces variance by entropy. We use entropic independence to derive tight mixing time bounds, overcoming the lossy nature of spectral analysis of Markov chains on exponential-sized state spaces. In our main technical result, we show a general way of deriving entropy contraction, a.k.a. modified log-Sobolev inequalities, for down-up random walks from spectral notions. We show that spectral independence of a distribution under arbitrary external fields automatically implies entropic independence. We furthermore extend our theory to the case where spectral independence does not hold under arbitrary external fields. To do this, we introduce a framework for obtaining tight mixing time bounds for Markov chains based on what we call restricted modified log-Sobolev inequalities, which guarantee entropy contraction not for allmore »