Situational awareness is the perception and understanding of the surrounding environment. Maintaining situational awareness is vital for performance and error prevention in safety critical domains. Prior work has examined applying augmented reality (AR) to the context of improving situational awareness, but has mainly focused on the applicability of using AR rather than on information design. Hence, there is a need to investigate how to design the presentation of information, especially in AR headsets, to increase users’ situational awareness. We conducted a Systematic Literature Review to research how information is currently presented in AR, especially in systems that are being utilized for situational awareness. Comparing current presentations of information to existing design recommendations aided in identifying future areas of design. In addition, this survey further discusses opportunities and challenges in applying AR to increasing users’ situational awareness.
more »
« less
Examining the Presentation of Information in Augmented Reality Headsets for Situational Awareness
Augmented Reality (AR) headsets are being employed in industrial settings (e.g., the oil industry); however, there has been little work on how information should be presented in these headsets, especially in the context of situational awareness. We present a study examining three different presentation styles (Display, Environment, Mixed Environment) for textual secondary information in AR headsets. We found that the Display and Environment presentation styles assisted in perception and comprehension. Our work contributes a first step to understanding how to design visual information in AR headsets to support situational awareness.
more »
« less
- Award ID(s):
- 1750840
- PAR ID:
- 10175151
- Date Published:
- Journal Name:
- International Conference on Advanced Visual Interfaces
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Situational awareness provides the decision making capability to identify, process, and comprehend big data. In our approach, situational awareness is achieved by integrating and analyzing multiple aspects of data using stacked bar graphs and geographic representations of the data. We provide a data visualization tool to represent COVID pandemic data on top of the geographical information. The combination of geospatial and temporal data provides the information needed to conduct situational analysis for the COVID-19 pandemic. By providing interactivity, geographical maps can be viewed from different perspectives and offer insight into the dynamical aspects of the COVID-19 pandemic for the fifty states in the USA. We have overlaid dynamic information on top of a geographical representation in an intuitive way for decision making. We describe how modeling and simulation of data increase situational awareness, especially when coupled with immersive virtual reality interaction. This paper presents an immersive virtual reality (VR) environment and mobile environment for data visualization using Oculus Rift head-mounted display and smartphones. This work combines neural network predictions with human-centric situational awareness and data analytics to provide accurate, timely, and scientific strategies in combatting and mitigating the spread of the coronavirus pandemic. Testing and evaluation of the data visualization tool have been done with real-time feed of COVID pandemic data set for immersive environment, non-immersive environment, and mobile environment.more » « less
-
Augmented reality (AR) headsets are being utilized in different task-based domains (e.g., healthcare, education) for both adults and children. However, prior work has mainly examined the applicability of AR headsets instead of how to design the visual information being displayed. It is essential to study how visual information should be presented in AR headsets to maximize task performance for both adults and children. Therefore, we conducted two studies (adults vs. children) analyzing distinct design combinations of critical and secondary textual information during a procedural assembly task. We found that while the design of information did not affect adults' task performance, the location of information had a direct effect on children's task performance. Our work contributes new understanding on how to design textual information in AR headsets to aid in adults’ and children's task performance. In addition, we identify specific differences on how to design textual information between adults and children.more » « less
-
Emergency response, navigation, and evacuation are key essentials for effective rescue and safety management. Situational awareness is a key ingredient when fire responders or emergency response personnel responds to an emergency. They have to quickly assess the layout of a building or a campus upon entry. Moreover, the occupants of a building or campus also need situational awareness for navigation and emergency response. We have developed an integrated situational awareness mobile augmented reality (AR) application for smart campus planning, management, and emergency response. Through the visualization of integrated geographic information systems and real-time data analysis, our mobile application provides insights into operational implications and offers information to support effective decision-making. Using existing building features, the authors demonstrate how the mobile AR application provides contextualized 3D visualizations that promote and support spatial knowledge acquisition and cognitive mapping thereby enhancing situational awareness. A limited user study was conducted to test the effectiveness of the proposed mobile AR application using the mobile phone usability questionnaire (MPUQ) framework. The results show that the mobile AR application was relatively easy to use and that it can be considered a useful application for navigation and evacuation.more » « less
-
Children are being presented with augmented reality (AR) in different contexts, such as education and gaming. However, little is known about how children conceptualize AR, especially AR headsets. Prior work has shown that children's interaction behaviors and expectations of technological devices can be quite different from adults’. It is important to understand children's mental models of AR headsets to design more effective experiences for them. To elicit children's perceptions, we conducted four participatory design sessions with ten children on designing content for imaginary AR headsets. We found that children expect AR systems to be highly intelligent and to recognize and virtually transform surroundings to create immersive environments. Also, children are in favor of using these devices for difficult tasks but prefer to work on their own for easy tasks. Our work contributes new understanding on how children comprehend AR headsets and provides recommendations for designing future headsets for children.more » « less