skip to main content


Title: Analytic Review of Using Augmented Reality for Situational Awareness
Situational awareness is the perception and understanding of the surrounding environment. Maintaining situational awareness is vital for performance and error prevention in safety critical domains. Prior work has examined applying augmented reality (AR) to the context of improving situational awareness, but has mainly focused on the applicability of using AR rather than on information design. Hence, there is a need to investigate how to design the presentation of information, especially in AR headsets, to increase users’ situational awareness. We conducted a Systematic Literature Review to research how information is currently presented in AR, especially in systems that are being utilized for situational awareness. Comparing current presentations of information to existing design recommendations aided in identifying future areas of design. In addition, this survey further discusses opportunities and challenges in applying AR to increasing users’ situational awareness.  more » « less
Award ID(s):
1750840
PAR ID:
10334977
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Visualization and Computer Graphics
ISSN:
1077-2626
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Augmented Reality (AR) headsets are being employed in industrial settings (e.g., the oil industry); however, there has been little work on how information should be presented in these headsets, especially in the context of situational awareness. We present a study examining three different presentation styles (Display, Environment, Mixed Environment) for textual secondary information in AR headsets. We found that the Display and Environment presentation styles assisted in perception and comprehension. Our work contributes a first step to understanding how to design visual information in AR headsets to support situational awareness. 
    more » « less
  2. Emergency response, navigation, and evacuation are key essentials for effective rescue and safety management. Situational awareness is a key ingredient when fire responders or emergency response personnel responds to an emergency. They have to quickly assess the layout of a building or a campus upon entry. Moreover, the occupants of a building or campus also need situational awareness for navigation and emergency response. We have developed an integrated situational awareness mobile augmented reality (AR) application for smart campus planning, management, and emergency response. Through the visualization of integrated geographic information systems and real-time data analysis, our mobile application provides insights into operational implications and offers information to support effective decision-making. Using existing building features, the authors demonstrate how the mobile AR application provides contextualized 3D visualizations that promote and support spatial knowledge acquisition and cognitive mapping thereby enhancing situational awareness. A limited user study was conducted to test the effectiveness of the proposed mobile AR application using the mobile phone usability questionnaire (MPUQ) framework. The results show that the mobile AR application was relatively easy to use and that it can be considered a useful application for navigation and evacuation. 
    more » « less
  3. null (Ed.)
    Situational awareness provides the decision making capability to identify, process, and comprehend big data. In our approach, situational awareness is achieved by integrating and analyzing multiple aspects of data using stacked bar graphs and geographic representations of the data. We provide a data visualization tool to represent COVID pandemic data on top of the geographical information. The combination of geospatial and temporal data provides the information needed to conduct situational analysis for the COVID-19 pandemic. By providing interactivity, geographical maps can be viewed from different perspectives and offer insight into the dynamical aspects of the COVID-19 pandemic for the fifty states in the USA. We have overlaid dynamic information on top of a geographical representation in an intuitive way for decision making. We describe how modeling and simulation of data increase situational awareness, especially when coupled with immersive virtual reality interaction. This paper presents an immersive virtual reality (VR) environment and mobile environment for data visualization using Oculus Rift head-mounted display and smartphones. This work combines neural network predictions with human-centric situational awareness and data analytics to provide accurate, timely, and scientific strategies in combatting and mitigating the spread of the coronavirus pandemic. Testing and evaluation of the data visualization tool have been done with real-time feed of COVID pandemic data set for immersive environment, non-immersive environment, and mobile environment. 
    more » « less
  4. Augmented reality (AR) has great potential for use in healthcare applications, especially remote medical training and supervision. In this paper, we analyze the usage of an AR communication system to teach a medical procedure, the placement of a central venous catheter (CVC) under ultrasound guidance. We examine various AR communication and collaboration components, including gestural communication, volumetric information, annotations, augmented objects, and augmented screens. We compare how teaching in AR differs from teaching through videoconferencing-based communication. Our results include a detailed medical training steps analysis in which we compare how verbal and visual communication differs between video and AR training. We identify procedural steps in which medical experts give visual instructions utilizing AR components. We examine the change in AR usage and interaction over time and recognize patterns between users. Moreover, AR design recommendations are given based on post-training interviews. 
    more » « less
  5. null (Ed.)
    Abstract Augmented reality (AR) is a unique, hands-on tool to deliver information. However, its educational value has been mainly demonstrated empirically so far. In this paper, we present a modeling approach to provide users with mastery of a skill, using AR learning content to implement an educational curriculum. We illustrate the potential of this approach by applying this to an important but pervasively misunderstood area of STEM learning, electrical circuitry. Unlike previous cognitive assessment models, we break down the area into microskills—the smallest segmentation of this knowledge—and concrete learning outcomes for each. This model empowers the user to perform a variety of tasks that are conducive to the acquisition of the skill. We also provide a classification of microskills and how to design them in an AR environment. Our results demonstrated that aligning the AR technology to specific learning objectives paves the way for high quality assessment, teaching, and learning. 
    more » « less