skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-Driven Models Reveal Mutant Cell Behaviors Important for Myxobacterial Aggregation
ABSTRACT Single mutations frequently alter several aspects of cell behavior but rarely reveal whether a particular statistically significant change is biologically significant. To determine which behavioral changes are most important for multicellular self-organization, we devised a new methodology using Myxococcus xanthus as a model system. During development, myxobacteria coordinate their movement to aggregate into spore-filled fruiting bodies. We investigate how aggregation is restored in two mutants, csgA and pilC , that cannot aggregate unless mixed with wild-type (WT) cells. To this end, we use cell tracking to follow the movement of fluorescently labeled cells in combination with data-driven agent-based modeling. The results indicate that just like WT cells, both mutants bias their movement toward aggregates and reduce motility inside aggregates. However, several aspects of mutant behavior remain uncorrected by WT, demonstrating that perfect recreation of WT behavior is unnecessary. In fact, synergies between errant behaviors can make aggregation robust. IMPORTANCE Self-organization into spatial patterns is evident in many multicellular phenomena. Even for the best-studied systems, our ability to dissect the mechanisms driving coordinated cell movement is limited. While genetic approaches can identify mutations perturbing multicellular patterns, the diverse nature of the signaling cues coupled to significant heterogeneity of individual cell behavior impedes our ability to mechanistically connect genes with phenotype. Small differences in the behaviors of mutant strains could be irrelevant or could sometimes lead to large differences in the emergent patterns. Here, we investigate rescue of multicellular aggregation in two mutant strains of Myxococcus xanthus mixed with wild-type cells. The results demonstrate how careful quantification of cell behavior coupled to data-driven modeling can identify specific motility features responsible for cell aggregation and thereby reveal important synergies and compensatory mechanisms. Notably, mutant cells do not need to precisely recreate wild-type behaviors to achieve complete aggregation.  more » « less
Award ID(s):
1903275 2019745 1856742
PAR ID:
10175165
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
mSystems
Volume:
5
Issue:
4
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rodríguez-Verdugo, Alejandra (Ed.)
    ABSTRACT The soil bacteriumMyxococcus xanthusis a model organism with a set of diverse behaviors. These behaviors include the starvation-induced multicellular development program, in which cells move collectively to assemble multicellular aggregates. After initial aggregates have formed, some will disperse, with smaller aggregates having a higher chance of dispersal. Initial aggregation is driven by two changes in cell behavior: cells slow down inside of aggregates and bias their motion by reversing direction less frequently when moving toward aggregates. However, the cell behaviors that drive dispersal are unknown. Here, we use fluorescent microscopy to quantify changes in cell behavior after initial aggregates have formed. We observe that after initial aggregate formation, cells adjust the bias in reversal timings by initiating reversals more rapidly when approaching unstable aggregates. Using agent-based modeling, we then show dispersal is predominantly generated by this change in bias, which is strong enough to overcome slowdown inside aggregates. Notably, the change in reversal bias is correlated with the nearest aggregate size, connecting cellular activity to previously observed correlations between aggregate size and fate. To determine if this connection is consistent across strains, we analyze a secondM. xanthusstrain with reduced levels of dispersal. We find that far fewer cells near smaller aggregates modified their bias. This implies that aggregate dispersal is under genetic control, providing a foundation for further investigations into the role it plays in the life cycle ofM. xanthus. IMPORTANCEUnderstanding the processes behind bacterial biofilm formation, maintenance, and dispersal is essential for addressing their effects on health and ecology. Within these multicellular communities, various cues can trigger differentiation into distinct cell types, allowing cells to adapt to their specific local environment. The soil bacteriumMyxococcus xanthusforms biofilms in response to starvation, marked by cells aggregating into mounds. Some aggregates persist as spore-filled fruiting bodies, while others disperse after initial formation for unknown reasons. Here, we use a combination of cell tracking analysis and computational simulations to identify behaviors at the cellular level that contribute to aggregate dispersal. Our results suggest that cells in aggregates actively determine whether to disperse or persist and undergo a transition to sporulation based on a self-produced cue related to the aggregate size. Identifying these cues is an important step in understanding and potentially manipulating bacterial cell-fate decisions. 
    more » « less
  2. Tullman-Ercek, Danielle (Ed.)
    ABSTRACT A wide range of biological systems, from microbial swarms to bird flocks, display emergent behaviors driven by coordinated movement of individuals. To this end, individual organisms interact by recognizing their kin and adjusting their motility based on others around them. However, even in the best-studied systems, the mechanistic basis of the interplay between kin recognition and motility coordination is not understood. Here, using a combination of experiments and mathematical modeling, we uncover the mechanism of an emergent social behavior in Myxococcus xanthus . By overexpressing the cell surface adhesins TraA and TraB, which are involved in kin recognition, large numbers of cells adhere to one another and form organized macroscopic circular aggregates that spin clockwise or counterclockwise. Mechanistically, TraAB adhesion results in sustained cell-cell contacts that trigger cells to suppress cell reversals, and circular aggregates form as the result of cells’ ability to follow their own cellular slime trails. Furthermore, our in silico simulations demonstrate a remarkable ability to predict self-organization patterns when phenotypically distinct strains are mixed. For example, defying naive expectations, both models and experiments found that strains engineered to overexpress different and incompatible TraAB adhesins nevertheless form mixed circular aggregates. Therefore, this work provides key mechanistic insights into M. xanthus social interactions and demonstrates how local cell contacts induce emergent collective behaviors by millions of cells. IMPORTANCE In many species, large populations exhibit emergent behaviors whereby all related individuals move in unison. For example, fish in schools can all dart in one direction simultaneously to avoid a predator. Currently, it is impossible to explain how such animals recognize kin through brain cognition and elicit such behaviors at a molecular level. However, microbes also recognize kin and exhibit emergent collective behaviors that are experimentally tractable. Here, using a model social bacterium, we engineer dispersed individuals to organize into synchronized collectives that create emergent patterns. With experimental and mathematical approaches, we explain how this occurs at both molecular and population levels. The results demonstrate how the combination of local physical interactions triggers intracellular signaling, which in turn leads to emergent behaviors on a population scale. 
    more » « less
  3. O'Toole, George (Ed.)
    ABSTRACT Myxococcus xanthus is a bacterium that lives on surfaces as a predatory biofilm called a swarm. As a growing swarm feeds on prey and expands, it displays dynamic multicellular patterns such as traveling waves called ripples and branching protrusions called flares. The rate at which a swarm expands across a surface, and the emergence of the coexisting patterns, are all controlled through coordinated cell movement. M. xanthus cells move using two motility systems known as adventurous (A) and social (S). Both are involved in swarm expansion and pattern formation. In this study, we describe a set of M. xanthus swarming genotype-to-phenotype associations that include both genetic and environmental perturbations. We identified new features of the swarming phenotype, recorded and measured swarm expansion using time-lapse microscopy, and compared the impact of mutations on different surfaces. These observations and analyses have increased our ability to discriminate between swarming phenotypes and provided context that allows us to identify some phenotypes as improbable outliers within the M. xanthus swarming phenome. IMPORTANCE Myxococcus xanthus grows on surfaces as a predatory biofilm called a swarm. In nature, a feeding swarm expands by moving over and consuming prey bacteria. In the laboratory, a swarm is created by spotting cell suspension onto nutrient agar in lieu of prey. The suspended cells quickly settle on the surface as the liquid is absorbed into the agar, and the new swarm then expands radially. An assay that measures the expansion rate of a swarm of mutant cells is the first, and sometimes only, measurement used to decide whether a particular mutation impacts swarm motility. We have broadened the scope of this assay by increasing the accuracy of measurements and introducing prey, resulting in new identifiable and quantifiable features that can be used to improve genotype-to-phenotype associations. 
    more » « less
  4. Søgaard-Andersen, Lotte (Ed.)
    ABSTRACT Myxococcus xanthususes short-range C-signaling to coordinate multicellular mound formation with sporulation during fruiting body development. AcsgAmutant deficient in C-signaling can cheat on wild type (WT) in mixtures and form spores disproportionately, but our understanding of cheating behavior is incomplete. We subjected mixtures of WT andcsgAcells at different ratios to co-development and used confocal microscopy and image analysis to quantify the arrangement and morphology of cells. At a ratio of one WT to fourcsgAcells (1:4), mounds failed to form. At 1:2, only a few mounds and spores formed. At 1:1, mounds formed with a similar number and arrangement of WT andcsgArods early in development, but later the number ofcsgAspores near the bottom of these nascent fruiting bodies (NFBs) exceeded that of WT. This cheating after mound formation involvedcsgAforming spores at a greater rate, while WT disappeared at a greater rate, either lysing or exiting NFBs. At 2:1 and 4:1,csgArods were more abundant than expected throughout the biofilm both before and during mound formation, and cheating continued after mound formation. We conclude that C-signaling restricts cheating behavior by requiring sufficient WT cells in mixtures. Excess cheaters may interfere with positive feedback loops that depend on the cellular arrangement to enhance C-signaling during mound building. Since long-range signaling could not likewise communicate the cellular arrangement, we propose that C-signaling was favored evolutionarily and that other short-range signaling mechanisms provided selective advantages in bacterial biofilm and multicellular animal development. IMPORTANCEBacteria communicate using both long- and short-range signals. Signaling affects community composition, structure, and function. Adherent communities called biofilms impact medicine, agriculture, industry, and the environment. To facilitate the manipulation of biofilms for societal benefits, a better understanding of short-range signaling is necessary. We investigated the susceptibility of short-range C-signaling to cheating duringMyxococcus xanthusbiofilm development. A mutant deficient in C-signaling fails to form mounds containing spores (i.e., fruiting bodies) but cheats on C-signaling by wild type in starved cell mixtures and forms spores disproportionately. We found that cheating requires sufficient wild-type cells in the initial mix and can occur both before mound formation and later during the sporulation stage of development. By restricting cheating behavior, short-range C-signaling may have been favored evolutionarily rather than long-range diffusible signaling. Cheating restrictions imposed by short-range signaling may have likewise driven the evolution of multicellularity broadly. 
    more » « less
  5. Myxococcus xanthus bacteria are a model system for understanding pattern formation and collective cell behaviors. When starving, cells aggregate into fruiting bodies to form metabolically inert spores. During predation, cells self-organize into traveling cell-density waves termed ripples. Both phase-contrast and fluorescence microscopy are used to observe these patterns but each has its limitations. Phase-contrast images have higher contrast, but the resulting image intensities lose their correlation with cell density. The intensities of fluorescence microscopy images, on the other hand, are well-correlated with cell density, enabling better segmentation of aggregates and better visualization of streaming patterns in between aggregates; however, fluorescence microscopy requires the engineering of cells to express fluorescent proteins and can be phototoxic to cells. To combine the advantages of both imaging methodologies, we develop a generative adversarial network that converts phase-contrast into synthesized fluorescent images. By including an additional histogram-equalized output to the state-of-the-art pix2pixHD algorithm, our model generates accurate images of aggregates and streams, enabling the estimation of aggregate positions and sizes, but with small shifts of their boundaries. Further training on ripple patterns enables accurate estimation of the rippling wavelength. Our methods are thus applicable for many other phenotypic behaviors and pattern formation studies. 
    more » « less