skip to main content

Title: Transient Heat Release During Mitochondrial Proton Uncoupling
Non-shivering thermogenesis through mitochondrial proton uncoupling is one of the dominant thermoregulatory mechanisms crucial for normal cellular functions. The metabolic pathway for intracellular temperature rise has widely been considered as steady-state substrate oxidation. Here, we show that a transient proton motive force (pmf) dissipation is more dominant than steady-state substrate oxidation in stimulated thermogenesis. Using transient intracellular thermometry during stimulated proton uncoupling in neurons of Aplysia californica, we observe temperature spikes of ~7.5 K that decay over two time scales: a rapid decay of ~4.8 K over ~1 s followed by a slower decay over ~17 s. The rapid decay correlates well in time with transient electrical heating from proton transport across the mitochondrial inner membrane. Beyond ~33 s, we do not observe any heating from intracellular sources, including substrate oxidation and pmf dissipation. Our measurements demonstrate the utility of transient thermometry in better understanding the thermochemistry of mitochondrial metabolism.
Authors:
; ; ; ; ; ; ;
Award ID(s):
1706854
Publication Date:
NSF-PAR ID:
10175169
Journal Name:
Communications biology
Volume:
2
Page Range or eLocation-ID:
279
ISSN:
2399-3642
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Researchers have been extensively studying wide-bandgap (WBG) semiconductor materials such as gallium nitride (GaN) with an aim to accomplish an improvement in size, weight, and power of power electronics beyond current devices based on silicon (Si). However, the increased operating power densities and reduced areal footprints of WBG device technologies result in significant levels of self-heating that can ultimately restrict device operation through performance degradation, reliability issues, and failure. Typically, self-heating in WBG devices is studied using a single measurement technique while operating the device under steady-state direct current measurement conditions. However, for switching applications, this steady-state thermal characterization may lose significance since the high power dissipation occurs during fast transient switching events. Therefore, it can be useful to probe the WBG devices under transient measurement conditions in order to better understand the thermal dynamics of these systems in practical applications. In this work, the transient thermal dynamics of an AlGaN/GaN high electron mobility transistor (HEMT) were studied using thermoreflectance thermal imaging and Raman thermometry. Also, the proper use of iterative pulsed measurement schemes such as thermoreflectance thermal imaging to determine the steady-state operating temperature of devices is discussed. These studies are followed with subsequent transient thermal characterization tomore »accurately probe the self-heating from steady-state down to submicrosecond pulse conditions using both thermoreflectance thermal imaging and Raman thermometry with temporal resolutions down to 15 ns.« less
  2. Recent advances in the determination of crystal structures and studies of optical properties of gold nanoclusters in the size range from tens to hundreds of gold atoms have started to reveal the grand evolution from gold complexes to nanoclusters and further to plasmonic nanoparticles. However, a detailed comparison of their photophysical properties is still lacking. Here, we compared the excited state behaviors of gold complexes, nanolcusters, and plasmonic nanoparticles, as well as small organic molecules by choosing four typical examples including the Au10 complex, Au25 nanocluster (1 nm metal core), 13 diameter Au nanoparticles, and Rhodamine B. To compare their photophysical behaviors, we performed steady-state absorption, photoluminescence, and femtosecond transient absorption spectroscopic measurements. It was found that gold nanoclusters behave somewhat like small molecules, showing both rapid internal conversion (<1 ps) and long-lived excited state lifetime (about 100 ns). Unlike the nanocluster form in which metal–metal transitions dominate, gold complexes showed significant charge transfer between metal atoms and surface ligands. Plasmonic gold nanoparticles, on the other hand, had electrons being heated and cooled (~100 ps time scale) after photo-excitation, and the relaxation was dominated by electron–electron scattering, electron–phonon coupling, and energy dissipation. In both nanoclusters and plasmonic nanoparticles, one canmore »observe coherent oscillations of the metal core, but with different fundamental origins. Overall, this work provides some benchmarking features for organic dye molecules, organometallic complexes, metal nanoclusters, and plasmonic nanoparticles.« less
  3. Measurements of turbulence, as rate of dissipation of turbulent kinetic energy (ε), adjacent to the air-water interface are rare but essential for understanding of gas transfer velocities (k) used to compute fluxes of greenhouse gases. Variability in ε is expected over diel cycles of stratification and mixing. Monin-Obukhov similarity theory (MOST) predicts an enhancement in ε during heating (buoyancy flux, β+) relative to that for shear (u*w 3/κz where u*w is water friction velocity, κ is von Karman constant, z is depth). To verify and expand predictions, we quantified ε in the upper 0.25 m and below from profiles of temperature-gradient microstructure in combination with time series meteorology and temperature in a tropical reservoir for winds <4 m s−1. Maximum likelihood estimates of near-surface ε during heating were independent of wind speed and high, ∼5 × 10−6 m2 s−3, up to three orders of magnitude higher than predictions from u*w 3/κz, increased with heating, and were ∼10 times higher than during cooling. k, estimated using near-surface ε, was ∼10 cm hr−1, validated with k obtained from chamber measurements, and 2–5 times higher than computed from wind-based models. The flux Richardson number (Rf) varied from ∼0.4 to ∼0.001 with a medianmore »value of 0.04 in the upper 0.25 m, less than the critical value of 0.2. We extend MOST by incorporating the variability in Rf when scaling the influence of β+ relative to u*w 3/κz in estimates of ε, and by extension, k, obtained from time series meteorological and temperature data.« less
  4. Since green fluorescent protein (GFP) has revolutionized molecular and cellular biology for about three decades, there has been a keen interest in understanding, designing, and controlling the fluorescence properties of GFP chromophore ( i.e. , HBDI) derivatives from the protein matrix to solution. Amongst these cross-disciplinary efforts, the elucidation of excited-state dynamics of HBDI derivatives holds the key to correlating the light-induced processes and fluorescence quantum yield (FQY). Herein, we implement steady-state electronic spectroscopy, femtosecond transient absorption (fs-TA), femtosecond stimulated Raman spectroscopy (FSRS), and quantum calculations to study a series of mono- and dihalogenated HBDI derivatives (X = F, Cl, Br, 2F, 2Cl, and 2Br) in basic aqueous solution, gaining new insights into the photophysical reaction coordinates. In the excited state, the halogenated “floppy” chromophores exhibit an anti-heavy atom effect, reflected by strong correlations between FQY vs. Franck–Condon energy ( E FC ) or Stokes shift, and k nr vs. E FC , as well as a swift bifurcation into the I-ring (major) and P-ring (minor) twisting motions. In the ground state, both ring-twisting motions become more susceptible to sterics and exhibit spectral signatures from the halogen-dependent hot ground-state absorption band decay in TA data. We envision this type ofmore »systematic analysis of the halogenated HBDI derivatives to provide guiding principles for the site-specific modification of GFP chromophores, and expand design space for brighter and potentially photoswitchable organic chemical probes in aqueous solution with discernible spectral signatures throughout the photocycle.« less
  5. Proteins are commonly known to transfer electrons over distances limited to a few nanometers. However, many biological processes require electron transport over far longer distances. For example, soil and sediment bacteria transport electrons, over hundreds of micrometers to even centimeters, via putative filamentous proteins rich in aromatic residues. However, measurements of true protein conductivity have been hampered by artifacts due to large contact resistances between proteins and electrodes. Using individual amyloid protein crystals with atomic-resolution structures as a model system, we perform contact-free measurements of intrinsic electronic conductivity using a four-electrode approach. We find hole transport through micrometer-long stacked tyrosines at physiologically relevant potentials. Notably, the transport rate through tyrosines (105s−1) is comparable to cytochromes. Our studies therefore show that amyloid proteins can efficiently transport charges, under ordinary thermal conditions, without any need for redox-active metal cofactors, large driving force, or photosensitizers to generate a high oxidation state for charge injection. By measuring conductivity as a function of molecular length, voltage, and temperature, while eliminating the dominant contribution of contact resistances, we show that a multistep hopping mechanism (composed of multiple tunneling steps), not single-step tunneling, explains the measured conductivity. Combined experimental and computational studies reveal that proton-coupled electron transfermore »confers conductivity; both the energetics of the proton acceptor, a neighboring glutamine, and its proximity to tyrosine influence the hole transport rate through a proton rocking mechanism. Surprisingly, conductivity increases 200-fold upon cooling due to higher availability of the proton acceptor by increased hydrogen bonding.

    « less