skip to main content


Title: Device-Level Multidimensional Thermal Dynamics With Implications for Current and Future Wide Bandgap Electronics
Abstract Researchers have been extensively studying wide-bandgap (WBG) semiconductor materials such as gallium nitride (GaN) with an aim to accomplish an improvement in size, weight, and power of power electronics beyond current devices based on silicon (Si). However, the increased operating power densities and reduced areal footprints of WBG device technologies result in significant levels of self-heating that can ultimately restrict device operation through performance degradation, reliability issues, and failure. Typically, self-heating in WBG devices is studied using a single measurement technique while operating the device under steady-state direct current measurement conditions. However, for switching applications, this steady-state thermal characterization may lose significance since the high power dissipation occurs during fast transient switching events. Therefore, it can be useful to probe the WBG devices under transient measurement conditions in order to better understand the thermal dynamics of these systems in practical applications. In this work, the transient thermal dynamics of an AlGaN/GaN high electron mobility transistor (HEMT) were studied using thermoreflectance thermal imaging and Raman thermometry. Also, the proper use of iterative pulsed measurement schemes such as thermoreflectance thermal imaging to determine the steady-state operating temperature of devices is discussed. These studies are followed with subsequent transient thermal characterization to accurately probe the self-heating from steady-state down to submicrosecond pulse conditions using both thermoreflectance thermal imaging and Raman thermometry with temporal resolutions down to 15 ns.  more » « less
Award ID(s):
1934482
NSF-PAR ID:
10207172
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Electronic Packaging
Volume:
142
Issue:
3
ISSN:
1043-7398
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, we compared the transient self-heating behavior of a homoepitaxial β-Ga2O3 MOSFET and a GaN-on-Si HEMT using nanoparticle-assisted Raman thermometry and thermoreflectance thermal imaging. The effectiveness of bottom-side and double-side cooling schemes using a polycrystalline diamond substrate and a diamond passivation layer were studied via transient thermal modeling. Because of the low thermal diffusivity of β-Ga2O3, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation layer (top-side cooling) to effectively cool the device active region under both steady-state and transient operating conditions. Without no proper cooling applied, the steady-state device-to-package thermal resistance of a homoepitaxial β-Ga2O3 MOSFET is 2.6 times higher than that for a GaN-on-Si HEMT. Replacing the substrate with polycrystalline diamond (under a 6.5 μm-thick β-Ga2O3 layer) could reduce the steady-state temperature rise by 65% compared to that for a homoepitaxial β-Ga2O3 MOSFET. However, for high frequency power switching applications beyond the ~102 kHz range, bottom-side cooling (integration with a high thermal conductivity substrate) does not improve the transient thermal response of the device. Adding a diamond passivation over layer diamond not only suppresses the steadystate temperature rise, but also drastically reduces the transient temperature rise under high frequency operating conditions. 
    more » « less
  2. null (Ed.)
    Abstract Gallium nitride (GaN) has emerged as one of the most attractive base materials for next-generation high-power and high-frequency electronic devices. Recent efforts have focused on realizing vertical power device structures such as in situ oxide, GaN interlayer based vertical trench metal–oxide–semiconductor field-effect transistors (OG-FETs). Unfortunately, the higher-power density of GaN electronics inevitably leads to considerable device self-heating which impacts device performance and reliability. Halide vapor-phase epitaxy (HVPE) is currently the most common approach for manufacturing commercial GaN substrates used to build vertical GaN transistors. Vertical device structures consist of GaN layers of diverse doping levels. Hence, it is of crucial importance to measure and understand how the dopant type (Si, Fe, and Mg), doping level, and crystal quality alter the thermal conductivity of HVPE-grown bulk GaN. In this work, a steady-state thermoreflectance (SSTR) technique was used to measure the thermal conductivity of HVPE-grown GaN substrates employing different doping schemes and levels. Structural and electrical characterization methods including X-ray diffraction (XRD), secondary-ion mass spectrometry (SIMS), Raman spectroscopy, and Hall-effect measurements were used to determine and compare the GaN crystal quality, dislocation density, doping level, and carrier concentration. Using this comprehensive suite of characterization methods, the interrelation among structural/electrical parameters and the thermal conductivity of bulk GaN substrates was investigated. While doping is evidenced to reduce the GaN thermal conductivity, the highest thermal conductivity (201 W/mK) is observed in a heavily Si-doped (1–5.00 × 1018 cm−3) substrate with the highest crystalline quality. This suggests that phonon-dislocation scattering dominates over phonon-impurity scattering in the tested HVPE-grown bulk GaN substrates. The results provide useful information for designing thermal management solutions for vertical GaN power electronic devices. 
    more » « less
  3. The ultra-wide bandgap (UWBG) energy (∼5.4 eV) of α-phase Ga2O3 offers the potential to achieve higher power switching performance and efficiency than today's power electronic devices. However, a major challenge to the development of the α-Ga2O3 power electronics is overheating, which can degrade the device performance and cause reliability issues. In this study, thermal characterization of an α-Ga2O3 MOSFET was performed using micro-Raman thermometry to understand the device self-heating behavior. The α-Ga2O3 MOSFET exhibits a channel temperature rise that is more than two times higher than that of a GaN high electron mobility transistor (HEMT). This is mainly because of the low thermal conductivity of α-Ga2O3 (11.9 ± 1.0 W/mK at room temperature), which was determined via laser-based pump-probe experiments. A hypothetical device structure was constructed via simulation that transfer-bonds the α-Ga2O3 epitaxial structure over a high thermal conductivity substrate. Modeling results suggest that the device thermal resistance can be reduced to a level comparable to or even better than those of today's GaN HEMTs using this strategy combined with thinning of the α-Ga2O3 buffer layer. The outcomes of this work suggest that device-level thermal management is essential to the successful deployment of UWBG α-Ga2O3 devices. 
    more » « less
  4. Gallium nitride (GaN) high electron mobility transistors (HEMTs) are key components of modern radio frequency (RF) power amplifiers. However, device self-heating negatively impacts both the performance and reliability of GaN HEMTs. Accordingly, laser-based pump-probe methods have been used to characterize the thermal resistance network of epitaxial material stacks that are used to fabricate HEMT structures. However, validation studies of these measurement results at the device level are lacking. In the present work, a GaN-on-SiC wafer was characterized using frequency-domain thermoreflectance and steady-state thermoreflectance techniques. The thermal conductivity of the GaN channel/buffer layer, SiC substrate, and the interfacial thermal boundary resistance at the GaN/SiC interface were determined. Results were validated by performing thermal imaging and modeling of a transmission line measurement (TLM) structure fabricated on the GaN-on-SiC wafer. 
    more » « less
  5. The demand for high power and high-frequency radio frequency (RF) power amplifiers makes AlGaN/GaN high electron mobility transistors (HEMTs) an attractive option due to their large critical field, high saturation velocity, and reduced device footprint as compared to Si-based counterparts. However, due to the high operating power densities, intense device self-heating occurs, which degrades the electrical performance and compromises the device’s reliability. The self-heating behavior of AlGaN/GaN HEMTs is known to be not solely a function of the dissipated power but is highly bias-dependent. As the operation of RF power amplifiers involves alteration of the device operation from fully-open to pinched-off channel conditions, it is critical to experimentally map the full channel temperature profile as a function of bias conditions. However, such measurement is difficult using optical thermography techniques due to the lack of optical access underneath the gate electrode, where the peak temperature is expected to occur.

    To address this challenge, an AlGaN/GaN HEMT employing a transparent gate made of indium tin oxide (ITO) was fabricated, which enables full channel temperature mapping using Raman spectroscopy. It was found that the maximum channel temperature rise under a partially pinched-off condition is more than ∼93% higher than that for an open channel condition, although both conditions would lead to an identical power dissipation level. The channel peak temperature probed in an ITO-gated device (underneath the gate) is ∼33% higher than the highest channel temperature that can be measured for a standard metal-gated AlGaN/GaN HEMT (i.e., next to the metal gate structure) operating under an identical bias condition. This indicates that one may significantly underestimate the device’s thermal resistance when solely relying on performing thermal characterization on the optically accessible region of a standard AlGaN/GaN HEMT. The outcomes of this study are important in terms of conducting a more accurate lifetime prediction of the device lifetime and designing thermal management solutions.

     
    more » « less