skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.

Title: Collaborative or Simply Uncaged? Understanding Human-Cobot Interactions in Automation
Collaborative robots, or cobots, represent a breakthrough technology designed for high-level (e.g., collaborative) interactions between workers and robots with capabilities for flexible deployment in industries such as manufacturing. Understanding how workers and companies use and integrate cobots is important to inform the future design of cobot systems and educational technologies that facilitate effective worker-cobot interaction. Yet, little is known about typical training for collaboration and the application of cobots in manufacturing. To close this gap, we interviewed nine experts in manufacturing about their experience with cobots. Our thematic analysis revealed that, contrary to the envisioned use, experts described most cobot applications as only low-level (e.g., pressing start/stop buttons) interactions with little flexible deployment, and experts felt traditional robotics skills were needed for collaborative and flexible interaction with cobots. We conclude with design recommendations for improved future robots, including programming and interface designs, and educational technologies to support collaborative use.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
CHI '20: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 12
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruis, Andrew R. ; Lee, Seung B. (Ed.)
    Rapid advances in technology also come with increased training needs for people who engineer and interact with these technologies. One such technology is collaborative robots, cobots, which are designed to be safer and easier to use than their traditional robotic counterparts. However, there have been few studies of how people use cobots and even fewer identifying what a user must know to properly set up and effectively use cobots for their manufacturing processes. In this study, we interviewed nine experts in robots and automation in manufacturing settings. We employ a quantitative ethnographic approach to gain qualitative insights into the cultural practices of robotics experts and corroborate these stories with quantitative warrants. Both quantitative and qualitative analyses revealed that experts put safety first when designing and monitoring cobot applications. This study improves our understanding of expert problem-solving in collaborative robotics, defines an expert model that can serve as a basis for the development of an authentic learning technology, and illustrates a useful method for modeling expertise in vocational settings. 
    more » « less
  2. Robots are ubiquitous in manufacturing settings from small-scale to large-scale. While collaborative robots (cobots) have signicant potential in these settings due to their exibility and ease of use, they can only reach their full potential when properly integrated. Specically, cobots need to be integrated in a manner that properly utilizes their strengths, improves the performance of the manufacturing process, and can be used in concert with human workers. Understanding how to properly integrate cobots into existing manufacturing workows requires careful consideration and the knowledge of roboticists, manufacturing engineers, and business administrators. In this work, we propose an approach to collaborating with manufacturers prior to the integration process that involves planning, analysis, development, and presentation of results. This approach ultimately allows manufacturers to make an informed choice about cobot integration within their facilities. We illustrate the application of this approach through a case study with a manufacturing collaborator and discuss insights learned throughout the process. 
    more » « less
  3. The introduction of collaborative robots (cobots) into the workplace has presented both opportunities and challenges for those seeking to utilize their functionality. Prior research has shown that despite the capabilities afforded by cobots, there is a disconnect between those capabilities and the applications that they currently are deployed in, partially due to a lack of effective cobot-focused instruction in the field. Experts who work successfully within this collaborative domain could offer insight into the considerations and process they use to more effectively capture this cobot capability. Using an analysis of expert insights in the collaborative interaction design space, we developed a set of Expert Frames based on these insights and integrated these Expert Frames into a new training and programming system that can be used to teach novice operators to think, program, and troubleshoot in ways that experts do. We present our system and case studies that demonstrate how Expert Frames provide novice users with the ability to analyze and learn from complex cobot application scenarios. 
    more » « less
  4. Collaborative robots (cobots) are increasingly utilized within the manufacturing industry. However, despite the promise of collaboration and easier programming when compared to traditional industrial robots, cobots introduce new interaction paradigms that require more thought about the environment and distribution of work to fully realize their collaboration capabilities. Due to these additional requirements, cobots have been found to be underutilized for their collaboration capabilities in current manufacturing. Therefore, in order to make cobots more accessible and easy to use, new systems need to be developed that support users during interaction. In this research, we propose a set of tools that target the use of cobots for multiple groups of individuals that use them, in order to better support users and simplify cobot collaboration. 
    more » « less
  5. A rapid rise in the recycling and remanufacturing of end-of-use electronic waste (e-waste) has been observed due to multiple factors including our increased dependence on electronic products and the lack of resources to meet the demand. E-waste disassembly, which is the operation of extracting valuable components for recycling purposes, has received ever increasing attention as it can serve both the economy and the environment. Traditionally, e-waste disassembly is labor intensive with significant occupational hazards. To reduce labor costs and enhance working efficiency, collaborative robots (cobots) might be a viable option and the feasibility of deploying cobots in high-risk or low value-added e-waste disassembly operations is of tremendous significance to be investigated. Therefore, the major objective of this study was to evaluate the effects of working with a cobot during e-waste disassembly processes on human workload and ergonomics through a human subject experiment. Statistical results revealed that using a cobot to assist participants with the desktop disassembly task reduced the sum of the NASA-TLX scores significantly compared to disassembling by themselves (p = 0.001). With regard to ergonomics, a significant reduction was observed in participants’ mean L5/S1 flexion angle as well as mean shoulder flexion angle on both sides when working with the cobot (p < 0.001). However, participants took a significantly longer time to accomplish the disassembly task when working with the cobot (p < 0.001), indicating a trade-off of deploying cobot in the e-waste disassembly process. Results from this study could advance the knowledge of how human workers would behave and react during human-robot collaborative e-waste disassembly tasks and shed light on the design of better HRC for this specific context. 
    more » « less