skip to main content

Title: High-redshift JWST predictions from IllustrisTNG: II. Galaxy line and continuum spectral indices and dust attenuation curves
ABSTRACT We present predictions for high redshift (z = 2−10) galaxy populations based on the IllustrisTNG simulation suite and a full Monte Carlo dust radiative transfer post-processing. Specifically, we discuss the H α and H β + $[\rm O \,{\small III}]$ luminosity functions up to z = 8. The predicted H β + $[\rm O \,{\small III}]$ luminosity functions are consistent with present observations at z ≲ 3 with ${\lesssim} 0.1\, {\rm dex}$ differences in luminosities. However, the predicted H α luminosity function is ${\sim }0.3\, {\rm dex}$ dimmer than the observed one at z ≃ 2. Furthermore, we explore continuum spectral indices, the Balmer break at 4000 Å; (D4000) and the UV continuum slope β. The median D4000 versus specific star formation rate relation predicted at z = 2 is in agreement with the local calibration despite a different distribution pattern of galaxies in this plane. In addition, we reproduce the observed AUV versus β relation and explore its dependence on galaxy stellar mass, providing an explanation for the observed complexity of this relation. We also find a deficiency in heavily attenuated, UV red galaxies in the simulations. Finally, we provide predictions for the dust attenuation curves of galaxies at z = 2−6 and investigate their dependence on galaxy colours and more » stellar masses. The attenuation curves are steeper in galaxies at higher redshifts, with bluer colours, or with lower stellar masses. We attribute these predicted trends to dust geometry. Overall, our results are consistent with present observations of high-redshift galaxies. Future James Webb Space Telecope observations will further test these predictions. « less
Authors:
; ; ; ; ; ; ; ;
Award ID(s):
1814053 1814259
Publication Date:
NSF-PAR ID:
10175212
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
495
Issue:
4
Page Range or eLocation-ID:
4747 to 4768
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The James Webb Space Telescope (JWST) promises to revolutionize our understanding of the early Universe, and contrasting its upcoming observations with predictions of the Λ cold dark matter model requires detailed theoretical forecasts. Here, we exploit the large dynamic range of the IllustrisTNG simulation suite, TNG50, TNG100, and TNG300, to derive multiband galaxy luminosity functions from z = 2 to z = 10. We put particular emphasis on the exploration of different dust attenuation models to determine galaxy luminosity functions for the rest-frame ultraviolet (UV), and apparent wide NIRCam bands. Our most detailed dust model is based on continuum Monte Carlo radiative transfer calculations employing observationally calibrated dust properties. This calibration results in constraints on the redshift evolution of the dust attenuation normalization and dust-to-metal ratios yielding a stronger redshift evolution of the attenuation normalization compared to most previous theoretical studies. Overall we find good agreement between the rest-frame UV luminosity functions and observational data for all redshifts, also beyond the regimes used for the dust model calibrations. Furthermore, we also recover the observed high-redshift (z = 4–6) UV luminosity versus stellar mass relation, the H α versus star formation rate relation, and the H α luminosity function at z = 2. The bright endmore »(MUV > −19.5) cumulative galaxy number densities are consistent with observational data. For the F200W NIRCam band, we predict that JWST will detect ∼80 (∼200) galaxies with a signal-to-noise ratio of 10 (5) within the NIRCam field of view, $2.2\times 2.2 \, {\rm arcmin}^{2}$, for a total exposure time of $10^5\, {\rm s}$ in the redshift range z = 8 ± 0.5. These numbers drop to ∼10 (∼40) for an exposure time of $10^4\, {\rm s}$.« less
  2. ABSTRACT

    We present an analysis of the dust attenuation of star-forming galaxies at z = 2.5–4.0 through the relationship between the UV spectral slope (β), stellar mass (M*), and the infrared excess (IRX = LIR/LUV) based on far-infrared continuum observations from the Atacama Large Millimeter/sub-millimeter Array (ALMA). Our study exploits the full ALMA archive over the COSMOS field processed by the A3COSMOS team, which includes an unprecedented sample of ∼1500 galaxies at z ∼ 3 as primary or secondary targets in ALMA band 6 or 7 observations with a median continuum sensitivity of 126 $\rm {\mu Jy\, beam}^{-1}$ (1σ). The detection rate is highly mass dependent, decreasing drastically below log (M*/M⊙) = 10.5. The detected galaxies show that the IRX–β relationship of massive (log M*/M⊙ > 10) main-sequence galaxies at z = 2.5–4.0 is consistent with that of local galaxies, while starbursts are generally offset by $\sim 0.5\, {\rm dex}$ to larger IRX values. At the low-mass end, we derive upper limits on the infrared luminosities through stacking of the ALMA data. The combined IRX–M* relation at $\rm {log\, ({\it M}_{\ast }/\mathrm{M}_{\odot })\gt 9}$ exhibits a significantly steeper slope than reported in previous studies at similar redshifts, implying little dust obscuration at log M*/M⊙ < 10.more »However, our results are consistent with earlier measurements at z ∼ 5.5, indicating a potential redshift evolution between z ∼ 2 and z ∼ 6. Deeper observations targeting low-mass galaxies will be required to confirm this finding.

    « less
  3. Abstract

    We investigate the relationship between dust attenuation and stellar mass (M*) in star-forming galaxies over cosmic time. For this analysis, we compare measurements from the MOSFIRE Deep Evolution Field survey atz∼ 2.3 and the Sloan Digital Sky Survey (SDSS) atz∼ 0, augmenting the latter optical data set with both UV Galaxy Evolution Explorer (GALEX) and mid-infrared Wide-field Infrared Survey Explorer (WISE) photometry from the GALEX-SDSS-WISE Catalog. We quantify dust attenuation using both spectroscopic measurements of Hαand Hβemission lines, and photometric measurements of the rest-UV stellar continuum. The Hα/Hβratio is used to determine the magnitude of attenuation at the wavelength of Hα,AHα. Rest-UV colors and spectral energy distribution fitting are used to estimateA1600, the magnitude of attenuation at a rest wavelength of 1600 Å. As in previous work, we find a lack of significant evolution in the relation between dust attenuation andM*over the redshift rangez∼ 0 toz∼ 2.3. Folding in the latest estimates of the evolution ofMdust, (Mdust/Mgas), and gas surface density at fixedM*, we find that the expectedMdustand dust mass surface density are both significantly higher atz∼ 2.3 than atz∼ 0. These differences appear at odds with the lack of evolution in dust attenuation. To explain the striking constancymore »in attenuation versusM*, it is essential to determine the relationship between metallicity and (Mdust/Mgas), the dust mass absorption coefficient and dust geometry, and the evolution of these relations and quantities fromz∼ 0 toz∼ 2.3.

    « less
  4. ABSTRACT

    We post-process galaxies in the IllustrisTNG simulations with skirt radiative transfer calculations to make predictions for the rest-frame near-infrared (NIR) and far-infrared (FIR) properties of galaxies at z ≥ 4. The rest-frame K- and z-band galaxy luminosity functions from TNG are overall consistent with observations, despite ${\sim}0.5\, \mathrm{dex}$ underprediction at z = 4 for MK ≲ −25 and Mz ≲ −24. Predictions for the JWST MIRI observed galaxy luminosity functions and number counts are given. Based on theoretical estimations, we show that the next-generation survey conducted by JWST can detect 500 (30) galaxies in F1000W in a survey area of $500\, {\rm arcmin}^{2}$ at z = 6 (z = 8). As opposed to the consistency in the UV, optical, and NIR, we find that TNG, combined with our dust modelling choices, significantly underpredicts the abundance of most dust-obscured and thus most luminous FIR galaxies. As a result, the obscured cosmic star formation rate density (SFRD) and the SFRD contributed by optical/NIR dark objects are underpredicted. The discrepancies discovered here could provide new constraints on the sub-grid feedback models, or the dust contents, of simulations. Meanwhile, although the TNG predicted dust temperature and its relations with IR luminosity and redshiftmore »are qualitatively consistent with observations, the peak dust temperature of z ≥ 6 galaxies are overestimated by about $20\, {\rm K}$. This could be related to the limited mass resolution of our simulations to fully resolve the porosity of the interstellar medium (or specifically its dust content) at these redshifts.

    « less
  5. ABSTRACT We report the identification of a low-mass active galactic nucleus (AGN), DES J0218−0430, in a redshift z = 0.823 galaxy in the Dark Energy Survey (DES) Supernova field. We select DES J0218−0430 as an AGN candidate by characterizing its long-term optical variability alone based on DES optical broad-band light curves spanning over 6 yr. An archival optical spectrum from the fourth phase of the Sloan Digital Sky Survey shows both broad Mg ii and broad H β lines, confirming its nature as a broad-line AGN. Archival XMM–Newton X-ray observations suggest an intrinsic hard X-ray luminosity of $L_{{\rm 2-12\, keV}}\approx 7.6\pm 0.4\times 10^{43}$ erg s−1, which exceeds those of the most X-ray luminous starburst galaxies, in support of an AGN driving the optical variability. Based on the broad H β from SDSS spectrum, we estimate a virial black hole (BH) mass of M• ≈ 106.43–106.72 M⊙ (with the error denoting the systematic uncertainty from different calibrations), consistent with the estimation from OzDES, making it the lowest mass AGN with redshift > 0.4 detected in optical. We estimate the host galaxy stellar mass to be M* ≈ 1010.5 ± 0.3 M⊙ based on modelling the multiwavelength spectral energy distribution. DES J0218−0430 extends the M•–M* relation observed in luminous AGNs at z ∼ 1 tomore »masses lower than being probed by previous work. Our work demonstrates the feasibility of using optical variability to identify low-mass AGNs at higher redshift in deeper synoptic surveys with direct implications for the upcoming Legacy Survey of Space and Time at Vera C. Rubin Observatory.« less