skip to main content


Title: CLEAR: Paschen-β Star Formation Rates and Dust Attenuation of Low-redshift Galaxies
Abstract We use Paschen- β (Pa β ; 1282 nm) observations from the Hubble Space Telescope G141 grism to study the star formation and dust-attenuation properties of a sample of 29 low-redshift ( z < 0.287) galaxies in the CANDELS Ly α Emission at Reionization survey. We first compare the nebular attenuation from Pa β /H α with the stellar attenuation inferred from the spectral energy distribution, finding that the galaxies in our sample are consistent with an average ratio of the continuum attenuation to the nebular gas of 0.44, but with a large amount of excess scatter beyond the observational uncertainties. Much of this scatter is linked to a large variation between the nebular dust attenuation as measured by (space-based) Pa β to (ground-based) H α to that from (ground-based) H α /H β . This implies there are important differences between attenuation measured from grism-based/wide-aperture Pa β fluxes and the ground-based/slit-measured Balmer decrement. We next compare star formation rates (SFRs) from Pa β to those from dust-corrected UV. We perform a survival analysis to infer a census of Pa β emission implied by both detections and nondetections. We find evidence that galaxies with lower stellar mass have more scatter in their ratio of Pa β to attenuation-corrected UV SFRs. When considering our Pa β detection limits, this observation supports the idea that lower-mass galaxies experience “burstier” star formation histories. Together, these results show that Pa β is a valuable tracer of a galaxy’s SFR, probing different timescales of star formation and potentially revealing star formation that is otherwise missed by UV and optical tracers.  more » « less
Award ID(s):
1945546
NSF-PAR ID:
10353147
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
929
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We perform an aperture-matched analysis of dust-corrected H α and UV star formation rates (SFRs) using 303 star-forming galaxies with spectroscopic redshifts 1.36 < zspec < 2.66 from the MOSFIRE Deep Evolution Field survey. By combining H α and H β emission line measurements with multiwaveband resolved Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey/3D-HST imaging, we directly compare dust-corrected H α and UV SFRs, inferred assuming a fixed attenuation curve shape and constant SFHs, within the spectroscopic aperture. Previous studies have found that H α and UV SFRs inferred with these assumptions generally agree for typical star-forming galaxies, but become increasingly discrepant for galaxies with higher SFRs (≳100 M⊙ yr−1), with H α-to-UV SFR ratios being larger for these galaxies. Our analysis shows that this trend persists even after carefully accounting for the apertures over which H α and UV-based SFRs (and the nebular and stellar continuum reddening) are derived. Furthermore, our results imply that H α SFRs may be higher in the centres of large galaxies (i.e. where there is coverage by the spectroscopic aperture) compared to their outskirts, which could be indicative of inside-out galaxy growth. Overall, we suggest that the persistent difference between nebular and stellar continuum reddening and high H α-to-UV SFR ratios at the centres of large galaxies may be indicative of a patchier distribution of dust in galaxies with high SFRs. 
    more » « less
  2. Abstract

    We investigate dust attenuation and its dependence on viewing angle for 308 star-forming galaxies at 1.3 ≤z≤ 2.6 from the MOSFIRE Deep Evolution Field survey. We divide galaxies with a detected Hαemission line and coverage of Hβinto eight groups by stellar mass, star formation rate (SFR), and inclination (i.e., axis ratio), and we then stack their spectra. From each stack, we measure the Balmer decrement and gas-phase metallicity, and then we compute the medianAVand UV continuum spectral slope (β). First, we find that none of the dust properties (Balmer decrement,AV, orβ) varies with the axis ratio. Second, both stellar and nebular attenuation increase with increasing galaxy mass, showing little residual dependence on SFR or metallicity. Third, nebular emission is more attenuated than stellar emission, and this difference grows even larger at higher galaxy masses and SFRs. Based on these results, we propose a three-component dust model in which attenuation predominantly occurs in star-forming regions and large, dusty star-forming clumps, with minimal attenuation in the diffuse ISM. In this model, nebular attenuation primarily originates in clumps, while stellar attenuation is dominated by star-forming regions. Clumps become larger and more common with increasing galaxy mass, creating the above mass trends. Finally, we argue that a fixed metal yield naturally leads to mass regulating dust attenuation. Infall of low-metallicity gas increases the SFR and lowers the metallicity, but leaves the dust column density mostly unchanged. We quantify this idea using the Kennicutt–Schmidt and fundamental metallicity relations, showing that galaxy mass is indeed the primary driver of dust attenuation.

     
    more » « less
  3. Abstract The UltraViolet imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey Fields (UVCANDELS) program provides Hubble Space Telescope (HST)/UVIS F275W imaging for four CANDELS fields. We combine this UV imaging with existing HST/near-IR grism spectroscopy from 3D-HST+AGHAST to directly compare the resolved rest-frame UV and H α emission for a sample of 979 galaxies at 0.7 < z < 1.5, spanning a range in stellar mass of 10 8−11.5 M ⊙ . Using a stacking analysis, we perform a resolved comparison between homogenized maps of rest-UV and H α to compute the average UV-to-H α luminosity ratio (an indicator of burstiness in star formation) as a function of galactocentric radius. We find that galaxies below stellar mass of ∼10 9.5 M ⊙ , at all radii, have a UV-to-H α ratio higher than the equilibrium value expected from constant star formation, indicating a significant contribution from bursty star formation. Even for galaxies with stellar mass ≳10 9.5 M ⊙ , the UV-to-H α ratio is elevated toward their outskirts ( R / R eff > 1.5), suggesting that bursty star formation is likely prevalent in the outskirts of even the most massive galaxies, but is likely overshadowed by their brighter cores. Furthermore, we present the UV-to-H α ratio as a function of galaxy surface brightness, a proxy for stellar mass surface density, and find that regions below ∼10 7.5 M ⊙ kpc −2 are consistent with bursty star formation, regardless of their galaxy stellar mass, potentially suggesting that local star formation is independent of global galaxy properties at the smallest scales. Last, we find galaxies at z > 1.1 to have bursty star formation, regardless of radius or surface brightness. 
    more » « less
  4. Abstract

    We investigate the relationship between dust attenuation and stellar mass (M*) in star-forming galaxies over cosmic time. For this analysis, we compare measurements from the MOSFIRE Deep Evolution Field survey atz∼ 2.3 and the Sloan Digital Sky Survey (SDSS) atz∼ 0, augmenting the latter optical data set with both UV Galaxy Evolution Explorer (GALEX) and mid-infrared Wide-field Infrared Survey Explorer (WISE) photometry from the GALEX-SDSS-WISE Catalog. We quantify dust attenuation using both spectroscopic measurements of Hαand Hβemission lines, and photometric measurements of the rest-UV stellar continuum. The Hα/Hβratio is used to determine the magnitude of attenuation at the wavelength of Hα,AHα. Rest-UV colors and spectral energy distribution fitting are used to estimateA1600, the magnitude of attenuation at a rest wavelength of 1600 Å. As in previous work, we find a lack of significant evolution in the relation between dust attenuation andM*over the redshift rangez∼ 0 toz∼ 2.3. Folding in the latest estimates of the evolution ofMdust, (Mdust/Mgas), and gas surface density at fixedM*, we find that the expectedMdustand dust mass surface density are both significantly higher atz∼ 2.3 than atz∼ 0. These differences appear at odds with the lack of evolution in dust attenuation. To explain the striking constancy in attenuation versusM*, it is essential to determine the relationship between metallicity and (Mdust/Mgas), the dust mass absorption coefficient and dust geometry, and the evolution of these relations and quantities fromz∼ 0 toz∼ 2.3.

     
    more » « less
  5. Context. The M BH – σ ⋆ relation is considered a result of coevolution between the host galaxies and their supermassive black holes. For elliptical bulge hosting inactive galaxies, this relation is well established, but there is still discussion concerning whether active galaxies follow the same relation. Aims. In this paper, we estimate black hole masses for a sample of 19 local luminous active galactic nuclei (AGNs; LLAMA) to test their location on the M BH – σ ⋆ relation. In addition, we test how robustly we can determine the stellar velocity dispersion in the presence of an AGN continuum and AGN emission lines, and as a function of signal-to-noise ratio. Methods. Supermassive black hole masses ( M BH ) were derived from the broad-line-based relations for H α , H β , and Pa β emission line profiles for Type 1 AGNs. We compared the bulge stellar velocity dispersion ( σ ⋆ ) as determined from the Ca II triplet (CaT) with the dispersion measured from the near-infrared CO (2-0) absorption features for each AGN and find them to be consistent with each other. We applied an extinction correction to the observed broad-line fluxes and we corrected the stellar velocity dispersion by an average rotation contribution as determined from spatially resolved stellar kinematic maps. Results. The H α -based black hole masses of our sample of AGNs were estimated in the range 6.34 ≤ log M BH  ≤ 7.75 M ⊙ and the σ ⋆CaT estimates range between 73 ≤  σ ⋆CaT  ≤ 227 km s −1 . From the so-constructed M BH  −  σ ⋆ relation for our Type 1 AGNs, we estimate the black hole masses for the Type 2 AGNs and the inactive galaxies in our sample. Conclusions. We find that our sample of local luminous AGNs is consistent with the M BH – σ ⋆ relation of lower luminosity AGNs and inactive galaxies, after correcting for dust extinction and the rotational contribution to the stellar velocity dispersion. 
    more » « less