skip to main content

Title: Measuring university students’ interest in biology: evaluation of an instrument targeting Hidi and Renninger’s individual interest
Award ID(s):
1712160 1711082
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Journal of STEM Education
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kasneci, Enkelejda (Ed.)
    Many eye-tracking data analyses rely on the Area-of-Interest (AOI) methodology, which utilizes AOIs to analyze metrics such as fixations. However, AOI-based methods have some inherent limitations including variability and subjectivity in shape, size, and location of AOIs. In this article, we propose an alternative approach to the traditional AOI dwell time analysis: Weighted Sum Durations (WSD). This approach decreases the subjectivity of AOI definitions by using Points-of-Interest (POI) while maintaining interpretability. In WSD, the durations of fixations toward each POI is weighted by the distance from the POI and summed together to generate a metric comparable to AOI dwell time. To validate WSD, we reanalyzed data from a previously published eye-tracking study (n = 90). The re-analysis replicated the original findings that people gaze less towards faces and more toward points of contact when viewing violent social interactions. 
    more » « less
  2. null (Ed.)
    Abstract Backgrounds This study examined how developing an engineering identity through the interplay between interest, recognition, and performance/competence beliefs and establishing a sense of belonging supported women’s persistence beliefs in engineering. Persistence belief in this study is captured through women’s certainty of graduating with an engineering degree. Students’ levels of motivation, affective states, and actions are based on what students believe to be true. Data were gathered from a survey administered to engineering students at nine institutions across the USA. Only female engineering students were used in the analysis. Students were further grouped into categories based on the representation of their race/ethnicity in engineering; 121 women were identified as minoritized in engineering, and 252 were identified as part of the majority group in engineering. Structural equation modeling was used to understand how the development of an engineering identity and modes of belonging (i.e., belonging in the major and in the classroom environment) supported women’s certainty to graduate with an engineering degree. All latent constructs were examined for measurement invariance; partial measurement invariance was achieved. Equality constraints on the structural paths of the model were not enforced to allow for differences across groups. Results Seeing oneself as an engineer (i.e., internal recognition) did not support minoritized women’s certainty to persist toward degree completion, whereas this internal recognition supported majority women’s persistence. Belonging in the major and belonging in the classroom environment did not support minoritized women’s certainty to persist. Establishing a sense of belonging in the classroom environment supported majority women’s certainty to persist. Minoritized women’s persistence toward degree completion was supported by their interest in engineering and their confidence in performing well in engineering coursework. However, interest in engineering was two times more influential toward minoritized women’s persistence than their performance competence beliefs. Conclusion These findings provide educators with a nuanced understanding of how identity development and modes of belonging differentially affect women’s persistence beliefs. These findings suggest that educators need to understand the powerful influence minoritized women’s interest in engineering has on their persistence beliefs and create mechanisms to continuously reinforce interest. 
    more » « less
  3. Community college students face difficulties in mathematics courses and may not understand the relevance of the topics they are learning to their intended career. When such connections are not made, mathematics courses can become barriers to pursuit of careers in Science, Technology, Engineering, and Mathematics (STEM). In the present study, we assessed student interest in mathematics and various STEM career areas and students’ knowledge of ways mathematics was involved in STEM careers in order to better understand how these variables are related. We discovered that interest in mathematics predicted interest in many, but not all, categories of STEM and STEM-related careers. We also assessed how deeply the student was engaged with their current career pathway, and how this related to other variables. We found that students’ depth of interest in their chosen career path was only associated with mathematics interest for some STEM careers. Finally, students’ perceptions of how mathematics was used in their chosen career area predicted their interest in mathematics, and their interest in some STEM career areas. 
    more » « less
  4. To promote interest in computer science (CS) among minority high school students from low-income families, we offered a one-month Summer Academy followed by a semester-long online group project. A group of 31 minority students from Alabama’s Black Belt areas participated in the program. The purpose of this study was two-fold. First, we examined factors affecting students’ motivation for learning CS. Second, we explored the program’s impact on student's future interest in learning CS. We conducted an individual Zoom interview with all participants, and they were also invited to complete a pre-and post-survey. We also observed classroom teaching during the Summer Academy and facilitated online Zoom meetings in the fall semester on a monthly basis. The findings revealed that early exposure to CS and family encouragement motivated students to explore the field of CS. Students found MIT App Inventor learning, meeting with guest speakers, and group projects most valuable, which positively affected students’ motivation to continue to learn CS. 
    more » « less