skip to main content

Title: Adversarial Point-of-Interest Recommendation
Point-of-interest (POI) recommendation is essential to a variety of services for both users and business. An extensive number of models have been developed to improve the recommendation performance by exploiting various characteristics and relations among POIs (e.g., spatio-temporal, social, etc.). However, very few studies closely look into the underlying mechanism accounting for why users prefer certain POIs to others. In this work, we initiate the first attempt to learn the distribution of user latent preference by proposing an Adversarial POI Recommendation (APOIR) model, consisting of two major components: (1) the recommender (R) which suggests POIs based on the learned distribution by maximizing the probabilities that these POIs are predicted as unvisited and potentially interested; and (2) the discriminator (D) which distinguishes the recommended POIs from the true check-ins and provides gradients as the guidance to improve R in a rewarding framework. Two components are co-trained by playing a minimax game towards improving itself while pushing the other to the boundary. By further integrating geographical and social relations among POIs into the reward function as well as optimizing R in a reinforcement learning manner, APOIR obtains significant performance improvement in four standard metrics compared to the state of the art methods.
; ; ; ; ;
Award ID(s):
1823279 1823267
Publication Date:
Journal Name:
The World Wide Web Conference, {WWW} 2019, San Francisco, CA, USA, May 13-17, 2019
Page Range or eLocation-ID:
3462 to 34618
Sponsoring Org:
National Science Foundation
More Like this
  1. Context has been recognized as an important factor to consider in personalized recommender systems. Particularly in location-based services (LBSs), a fundamental task is to recommend to a mobile user where he/she could be interested to visit next at the right time. Additionally, location-based social networks (LBSNs) allow users to share location-embedded information with friends who often co-occur in the same or nearby points-of-interest (POIs) or share similar POI visiting histories, due to the social homophily theory and Tobler’s first law of geography. So, both the time information and LBSN friendship relations should be utilized for POI recommendation. Tensor completion has recently gained some attention in time-aware recommender systems. The problem decomposes a user-item-time tensor into low-rank embedding matrices of users, items and times using its observed entries, so that the underlying low-rank subspace structure can be tracked to fill the missing entries for time-aware recommendation. However, these tensor completion methods ignore the social-spatial context information available in LBSNs, which is important for POI recommendation since people tend to share their preferences with their friends, and near things are more related than distant things. In this paper, we utilize the side information of social networks and POI locations to enhance themore »tensor completion model paradigm for more effective time-aware POI recommendation. Specifically, we propose a regularization loss head based on a novel social Hausdorff distance function to optimize the reconstructed tensor. We also quantify the popularity of different POIs with location entropy to prevent very popular POIs from being over-represented hence suppressing the appearance of other more diverse POIs. To address the sensitivity of negative sampling, we train the model on the whole data by treating all unlabeled entries in the observed tensor as negative, and rewriting the loss function in a smart way to reduce the computational cost. Through extensive experiments on real datasets, we demonstrate the superiority of our model over state-of-the-art tensor completion methods.« less
  2. Point of interest (POI) recommendation, which provides personalized recommendation of places to mobile users, is an important task in location-based social networks (LBSNs). However, quite different from traditional interest-oriented merchandise recommendation, POI recommendation is more complex due to the timing effects: we need to examine whether the POI fits a user’s availability. While there are some prior studies which included the temporal effect into POI recommendations, they overlooked the compatibility between time-varying popularity of POIs and regular availability of users, which we believe has a non-negligible impact on user decision-making. To this end, in this paper, we present a novel method which incorporates the degree of temporal matching between users and POIs into personalized POI recommendations. Specifically, we first profile the temporal popularity of POIs to show when a POI is popular for visit by mining the spatio-temporal human mobility and POI category data. Secondly, we propose latent user regularities to characterize when a user is regularly available for exploring POIs, which is learned with a user-POI temporal matching function. Finally, results of extensive experiments with real-world POI check-in and human mobility data demonstrate that our proposed user-POI temporal matching method delivers substantial advantages over baseline models for POI recommendationmore »tasks.« less
  3. Social recommendation has achieved great success in many domains including e-commerce and location-based social networks. Existing methods usually explore the user-item interactions or user-user connections to predict users’ preference behaviors. However, they usually learn both user and item representations in Euclidean space, which has large limitations for exploring the latent hierarchical property in the data. In this article, we study a novel problem of hyperbolic social recommendation, where we aim to learn the compact but strong representations for both users and items. Meanwhile, this work also addresses two critical domain-issues, which are under-explored. First, users often make trade-offs with multiple underlying aspect factors to make decisions during their interactions with items. Second, users generally build connections with others in terms of different aspects, which produces different influences with aspects in social network. To this end, we propose a novel graph neural network (GNN) framework with multiple aspect learning, namely, HyperSoRec. Specifically, we first embed all users, items, and aspects into hyperbolic space with superior representations to ensure their hierarchical properties. Then, we adapt a GNN with novel multi-aspect message-passing-receiving mechanism to capture different influences among users. Next, to characterize the multi-aspect interactions of users on items, we propose an adaptivemore »hyperbolic metric learning method by introducing learnable interactive relations among different aspects. Finally, we utilize the hyperbolic translational distance to measure the plausibility in each user-item pair for recommendation. Experimental results on two public datasets clearly demonstrate that our HyperSoRec not only achieves significant improvement for recommendation performance but also shows better representation ability in hyperbolic space with strong robustness and reliability.« less
  4. We examined the effect of social distancing on changes in visits to urban hotspot points of interest. In a pandemic situation, urban hotspots could be potential superspreader areas as visits to urban hotspots can increase the risk of contact and transmission of a disease among a population. We mapped census-block-group to point-of-interest (POI) movement networks in 16 cities in the United States. We adopted a modified coarse-grain approach to examine patterns of visits to POIs among hotspots and non-hotspots from January to May 2020. Also, we conducted chi-square tests to identify POIs with significant flux-in changes during the analysis period. The results showed disparate patterns across cities in terms of reduction in hotspot POI visitors. Sixteen cities were divided into two categories using a time series clustering method. In one category, which includes the cities of San Francisco, Seattle and Chicago, we observed a considerable decrease in hotspot POI visitors, while in another category, including the cities of Austin, Houston and San Diego, the visitors to hotspots did not greatly decrease. While all the cities exhibited overall decreased visitors to POIs, one category maintained the proportion of visitors to hotspot POIs. The proportion of visitors to some POIs (e.g. restaurants)more »remained stable during the social distancing period, while some POIs had an increased proportion of visitors (e.g. grocery stores). We also identified POIs with significant flux-in changes, indicating that related businesses were greatly affected by social distancing. The study was limited to 16 metropolitan cities in the United States. The proposed methodology could be applied to digital trace data in other cities and countries to study the patterns of movements to POIs during the COVID-19 pandemic.« less
  5. Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complex and user relations can be high-order. Hypergraph provides a natural way to model high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. Extensive experiments on multiple real-world datasets demonstrate the superiority of the proposed model over the current SOTA methods, and the ablation study verifies the effectiveness and rationale of the multi-channel settingmore »and the self-supervised task. The implementation of our model is available via« less