skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.

Title: Mechanical properties of lipid bilayers: a note on the Poisson ratio
We investigate the Poisson ratio ν of fluid lipid bilayers, i.e. , the question how area strains compare to the changes in membrane thickness (or, equivalently, volume) that accompany them. We first examine existing experimental results on the area- and volume compressibility of lipid membranes. Analyzing them within the framework of linear elasticity theory for homogeneous thin fluid sheets leads us to conclude that lipid membrane deformations are to a very good approximation volume-preserving, with a Poisson ratio that is likely about 3% smaller than the common soft matter limit . These results are fully consistent with atomistic simulations of a DOPC membrane at varying amount of applied lateral stress, for which we instead deduce ν by directly comparing area- and volume strains. To assess the problematic assumption of transverse homogeneity, we also define a depth-resolved Poisson ratio ν ( z ) and determine it through a refined analysis of the same set of simulations. We find that throughout the membrane's thickness, ν ( z ) is close to the value derived assuming homogeneity, with only minor variations of borderline statistical significance.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Soft Matter
Page Range / eLocation ID:
9085 to 9092
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lipid vesicles play a key role in fundamental biological processes. Despite recent progress, we lack a complete understanding of the non-equilibrium dynamics of vesicles due to challenges associated with long-time observation of shape fluctuations in strong flows. In this work, we present a flow-phase diagram for vesicle shape and conformational transitions in planar extensional flow using a Stokes trap, which enables control over the center-of-mass position of single or multiple vesicles in precisely defined flows [A. Shenoy, C. V. Rao and C. M. Schroeder, Proc. Natl. Acad. Sci. U. S. A. , 2016, 113 (15), 3976–3981]. In this way, we directly observe the non-equilibrium conformations of lipid vesicles as a function of reduced volume ν , capillary number Ca, and viscosity contrast λ . Our results show that vesicle dynamics in extensional flow are characterized by the emergence of three distinct shape transitions, including a tubular to symmetric dumbbell transition, a spheroid to asymmetric dumbbell transition, and quasi-spherical to ellipsoid transition. The experimental phase diagram is in good agreement with recent predictions from simulations [V. Narsimhan, A. P. Spann and E. S. Shaqfeh, J. Fluid Mech. , 2014, 750 , 144]. We further show that the phase boundary of vesicle shape transitions is independent of the viscosity contrast. Taken together, our results demonstrate the utility of the Stokes trap for the precise quantification of vesicle stretching dynamics in precisely defined flows. 
    more » « less
  2. Abstract Characterizing the elastic properties of soft materials through bulge testing relies on accurate measurement of deformation, which is experimentally challenging. To avoid measuring deformation, we propose a hydrodynamic bulge test for characterizing the material properties of thick, pre-stressed elastic sheets via their fluid–structure interaction with a steady viscous fluid flow. Specifically, the hydrodynamic bulge test relies on a pressure drop measurement across a rectangular microchannel with a deformable top wall. We develop a mathematical model using first-order shear deformation theory of plates with stretching and the lubrication approximation for the Newtonian fluid flow. Specifically, a relationship is derived between the imposed flowrate and the total pressure drop. Then, this relationship is inverted numerically to yield estimates of the Young’s modulus (given the Poisson ratio) if the pressure drop is measured (given the steady flowrate). Direct numerical simulations of two-way-coupled fluid–structure interaction are carried out in ansys to determine the cross-sectional membrane deformation and the hydrodynamic pressure distribution. Taking the simulations as “ground truth,” a hydrodynamic bulge test is performed using the simulation data to ascertain the accuracy and the validity of the proposed methodology for estimating material properties. An error propagation analysis is performed via Monte Carlo simulation to characterize the susceptibility of the hydrodynamic bulge test estimates to noise. We find that, while a hydrodynamic bulge test is less accurate in characterizing material properties, it is less susceptible to noise, in the input (measured) variable, than a hydrostatic bulge test. 
    more » « less
  3. Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure–property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach—combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (2H NMR) spectroscopy, and molecular dynamics (MD) simulations—we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer’s packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure–property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol’s role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid–protein interactions.

    more » « less
  4. Abstract

    In this work, the influence of the rigid substrate on the determination of the sample Young's modulus, the so‐calledbottom‐effect artifact, is demonstrated by an atomic force microscopy force‐spectroscopy experiment. The nanomechanical properties of a one‐component supported lipid membrane (SLM) exhibiting areas of two different thicknesses are studied: While a standard contact mechanics model (Sneddon) provides two different elastic moduli for these two morphologies, it is shown that Garcia's bottom‐effect artifact correction yields a unique value, as expected for an intrinsic material property. Remarkably, it is demonstrated that the ratio between the contact radius (and not only the indentation) and the sample thickness is the key parameter addressing the relevance of the bottom‐effect artifact. The experimental results are validated by finite element method simulations providing a solid support to Garcia's theory. The amphiphilic nature of the investigated material is representative of several kinds of lipids, suggesting that the results have far reaching implications for determining thecorrectYoung's modulus of SLMs. The generality of Garcia's bottom‐effect artifact correction allows its application to every kind of supported soft film.

    more » « less
  5. The elastic and viscous properties of biological membranes play a vital role in controlling cell functions that require local reorganization of the membrane components as well as dramatic shape changes such as endocytosis, vesicular trafficking, and cell division. These properties are widely acknowledged to depend on the unique composition of lipids within the membrane, yet the effects of lipid mixing on the membrane biophysical properties remain poorly understood. Here, we present a comprehensive characterization of the structural, elastic, and viscous properties of fluid membranes composed of binary mixtures of lipids with different tail lengths. We show that the mixed lipid membrane properties are not simply additive quantities of the single-component analogs. Instead, the mixed membranes are more dynamic than either of their constituents, quantified as a decrease in their bending modulus, area compressibility modulus, and viscosity. While the enhanced dynamics are seemingly unexpected, we show that the measured moduli and viscosity for both the mixed and single-component bilayers all scale with the area per lipid and collapse onto respective master curves. This scaling links the increase in dynamics to mixing-induced changes in the lipid packing and membrane structure. More importantly, the results show that the membrane properties can be manipulated through lipid composition the same way bimodal blends of surfactants, liquid crystals, and polymers are used to engineer the mechanical properties of soft materials, with broad implications for understanding how lipid diversity relates to biomembrane function.

    more » « less