skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1764257

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gnanakaran, Sandrasegaram; Gorfe, Alemayehu (Ed.)
    Many biological membranes host different lipid species in their two leaflets. Since their spontaneous curvatures are typically not the same, this compositional asymmetry generally entails bending torques, which can be counteracted by differential stress—the difference between the two leaflet tensions. This stress, in turn, can affect elastic parameters or phase behavior of the membrane or each individual leaflet, or push easily flippable species, especially cholesterol, from the compressed leaflet into the tense leaflet. In short, breaking the symmetry of a single observable (to wit: composition), essentially breaks all other symmetries as well, with many potentially interesting consequences. This brief report examines the elastic aspects of this interplay, focusing on some elementary conditions of mechanical and thermodynamic equilibrium, but also shows how this poses novel questions that we are only beginning to appreciate. 
    more » « less
  2. The quantum free energy of a system governed by a standard Hamiltonian is larger than its classical counterpart. The lowest-order correction, first calculated by Wigner, is proportional to ℏ2 and involves the sum of the mean squared forces. We present an elementary derivation of this result by drawing upon the Zassenhaus formula, an operator-generalization for the main functional relation of the exponential map. Our approach highlights the central role of non-commutativity between kinetic and potential energy and is more direct than Wigner's original calculation, or even streamlined variations thereof found in modern textbooks. We illustrate the quality of the correction for the simple harmonic oscillator (analytically) and the purely quartic oscillator (numerically) in the limit of high temperature. We also demonstrate that the Wigner correction fails in situations with sufficiently rapidly changing potentials, for instance, the particle in a box. 
    more » « less
  3. DNA nanotechnology has proven exceptionally apt at probing and manipulating biological environments as it can create nanostructures of almost arbitrary shape that permit countless types of modifications, all while being inherently biocompatible. Emergent areas of particular interest are applications involving cellular membranes, but to fully explore the range of possibilities requires interdisciplinary knowledge of DNA nanotechnology, cell and membrane biology, and biophysics. In this review, we aim for a concise introduction to the intersection of these three fields. After briefly revisiting DNA nanotechnology, as well as the biological and mechanical properties of lipid bilayers and cellular membranes, we summarize strategies to mediate interactions between membranes and DNA nanostructures, with a focus on programmed delivery onto, into, and through lipid membranes. We also highlight emerging applications, including membrane sculpting, multicell self-assembly, spatial arrangement and organization of ligands and proteins, biomechanical sensing, synthetic DNA nanopores, biological imaging, and biomelecular sensing. Many critical but exciting challenges lie ahead, and we outline what strikes us as promising directions when translating DNA nanostructures for future in vitro and in vivo membrane applications. 
    more » « less
  4. We investigate the Poisson ratio ν of fluid lipid bilayers, i.e. , the question how area strains compare to the changes in membrane thickness (or, equivalently, volume) that accompany them. We first examine existing experimental results on the area- and volume compressibility of lipid membranes. Analyzing them within the framework of linear elasticity theory for homogeneous thin fluid sheets leads us to conclude that lipid membrane deformations are to a very good approximation volume-preserving, with a Poisson ratio that is likely about 3% smaller than the common soft matter limit . These results are fully consistent with atomistic simulations of a DOPC membrane at varying amount of applied lateral stress, for which we instead deduce ν by directly comparing area- and volume strains. To assess the problematic assumption of transverse homogeneity, we also define a depth-resolved Poisson ratio ν ( z ) and determine it through a refined analysis of the same set of simulations. We find that throughout the membrane's thickness, ν ( z ) is close to the value derived assuming homogeneity, with only minor variations of borderline statistical significance. 
    more » « less