skip to main content

Title: The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2017/2018 follow-up campaign: discovery of 10 lensed quasars and 10 quasar pairs
ABSTRACT We report the results of the STRong lensing Insights into the Dark Energy Survey (STRIDES) follow-up campaign of the late 2017/early 2018 season. We obtained spectra of 65 lensed quasar candidates with ESO Faint Object Spectrograph and Camera 2 on the NTT and Echellette Spectrograph and Imager on Keck, confirming 10 new lensed quasars and 10 quasar pairs. Eight lensed quasars are doubly imaged with source redshifts between 0.99 and 2.90, one is triply imaged (DESJ0345−2545, z = 1.68), and one is quadruply imaged (quad: DESJ0053−2012, z = 3.8). Singular isothermal ellipsoid models for the doubles, based on high-resolution imaging from SAMI on Southern Astrophysical Research Telescope or Near InfraRed Camera 2 on Keck, give total magnifications between 3.2 and 5.6, and Einstein radii between 0.49 and 1.97 arcsec. After spectroscopic follow-up, we extract multi-epoch grizY photometry of confirmed lensed quasars and contaminant quasar + star pairs from DES data using parametric multiband modelling, and compare variability in each system’s components. By measuring the reduced χ2 associated with fitting all epochs to the same magnitude, we find a simple cut on the less variable component that retains all confirmed lensed quasars, while removing 94 per cent of contaminant systems. Based on our spectroscopic follow-up, this variability information improves selection of lensed quasars and quasar pairs from 34-45 per cent to 51–70 per cent, with most remaining contaminants being star-forming galaxies. Using mock lensed quasar light curves we demonstrate that selection based only on variability will over-represent the quad fraction by 10 per cent over a complete DES magnitude-limited sample, explained by the magnification bias and hence lower luminosity/more variable sources in quads.  more » « less
Award ID(s):
1714953 1906976 1907396
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
3491 to 3511
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    We report the spectroscopic follow-up of 175 lensed quasar candidates selected using Gaia Data Release 2 observations following Paper III of this series. Systems include 86 confirmed lensed quasars and a further 17 likely lensed quasars based on imaging and/or similar spectra. We also confirm 11 projected quasar pairs and 11 physical quasar pairs, while 25 systems are left as unclassified quasar pairs – pairs of quasars at the same redshift, which could be either distinct quasars or potential lensed quasars. Especially interesting objects include eight quadruply imaged quasars of which two have BAL sources, an apparent triple, and a doubly lensed LoBaL quasar. The source redshifts and image separations of these new lenses range between 0.65–3.59 and 0.78–6.23 arcsec, respectively. We compare the known population of lensed quasars to an updated mock catalogue at image separations between 1 and 4 arcsec, showing a very good match at z < 1.5. At z > 1.5, only 47 per cent of the predicted number are known, with 56 per cent of these missing lenses at image separations below 1.5 arcsec. The missing higher redshift, small-separation systems will have fainter lensing galaxies, and are partially explained by the unclassified quasar pairs and likely lenses presented in this work, which require deeper imaging. Of the 11 new reported projected quasar pairs, 5 have impact parameters below 10 kpc, almost tripling the number of such systems, which can probe the innermost regions of quasar host galaxies through absorption studies. We also report four new lensed galaxies discovered through our searches, with source redshifts ranging from 0.62 to 2.79.

    more » « less
  2. Abstract

    Dual supermassive black holes (SMBHs) at ∼kiloparsec scales are the progenitor population of SMBH mergers and play an important role in understanding the pairing and dynamical evolution of massive black holes in galaxy mergers. Because of the stringent resolution requirement and the apparent rareness of these small-separation pairs, there are scarce observational constraints on this population, with few confirmed dual SMBHs at <10 kpc separations atz> 1. Here we present results from a pilot search for kiloparsec-scale dual quasars selected with Gaia Data release 2 (DR2) astrometry and followed up with Hubble Space Telescope (HST) Wide Field Camera 3 dual-band (F475W and F814W) snapshot imaging. Our targets are quasars primarily selected with the varstrometry technique, i.e., light centroid jitter caused by asynchronous variability from both members in an unresolved quasar pair, supplemented by subarcsecond pairs already resolved by Gaia DR2. We find an overall high fraction of HST-resolved pairs among the varstrometry-selected quasars (unresolved in Gaia DR2), ∼30%–50%, increasing toward high redshift (∼60%–80% atz> 1.5). We discuss the nature of the 45 resolved subarcsecond pairs based on HST and supplementary data. A substantial fraction (∼40%) of these pairs are likely physical quasar pairs or gravitationally lensed quasars. We also discover a triple quasar candidate and a quadruply lensed quasar, which is among the smallest-separation quadruple lenses. These results provide important guidelines to improve varstrometry selection and follow-up confirmation of ~kiloparsec-scale dual SMBHs at high redshift.

    more » « less
  3. Abstract

    The statistics of galactic-scale quasar pairs can elucidate our understanding of the dynamical evolution of supermassive black hole (SMBH) pairs, the duty cycles of quasar activity in mergers, or even the nature of dark matter, but they have been challenging to measure at cosmic noon, the prime epoch of massive galaxy and SMBH formation. Here we measure a double quasar fraction of ∼6.2 ± 0.5 × 10−4integrated over ∼0.″3–3″ separations (projected physical separations of ∼3–30 kpc atz∼ 2) in luminous (Lbol> 1045.8erg s−1) unobscured quasars at 1.5 <z< 3.5 using Gaia EDR3-resolved pairs around SDSS DR16 quasars. The measurement was based on a sample of 60 Gaia-resolved double quasars (out of 487 Gaia pairs dominated by quasar+star superpositions) at these separations, corrected for pair completeness in Gaia, which we quantify as functions of pair separation, magnitude of the primary, and magnitude contrast. The double quasar fraction increases toward smaller separations by a factor of ∼5 over these scales. The division between physical quasar pairs and lensed quasars in our sample is currently unknown, requiring dedicated follow-up observations (in particular, deep, subarcsecond-resolution IR imaging for the closest pairs). Intriguingly, at this point, the observed pair statistics are in rough agreement with theoretical predictions both for the lensed quasar population in mock catalogs and for dual quasars in cosmological hydrodynamic simulations. Upcoming wide-field imaging/spectroscopic space missions such as Euclid, CSST, and Roman, combined with targeted follow-up observations, will conclusively measure the abundances and host galaxy properties of galactic-scale quasar pairs, offset AGNs, and subarcsecond lensed quasars across cosmic time.

    more » « less
  4. Abstract

    We present the first results from a new survey for high-redshift (z≳ 5) gravitationally lensed quasars and close quasar pairs. We carry out candidate selection based on the colors and shapes of objects in public imaging surveys, then conduct follow-up observations to confirm the nature of high-priority candidates. In this paper, we report the discoveries of J0025–0145 (z= 5.07), which we identify as an intermediately lensed quasar, and J2329–0522 (z= 4.85), which is a kiloparsec-scale close quasar pair. The Hubble Space Telescope (HST) image of J0025–0145 shows a foreground lensing galaxy located 0.″6 away from the quasar. However, J0025–0145 does not exhibit multiple lensed images of the quasar, and we identify J0025–0145 as an intermediate lensing system (a lensing system that is not multiply imaged but has a significant magnification). The spectrum of J0025–0145 implies an extreme Eddington ratio if the quasar luminosity is intrinsic, which could be explained by a large lensing magnification. The HST image of J0025–0145 also indicates a tentative detection of the quasar host galaxy in the rest-frame UV, illustrating the power of lensing magnification and distortion in studies of high-redshift quasar host galaxies. Object J2329–0522 consists of two resolved components with significantly different spectral properties and a lack of lensing galaxy detection under subarcsecond seeing. We identify it as a close quasar pair, which is the highest confirmed kiloparsec-scale quasar pair to date. We also report four lensed quasars and quasar pairs at 2 <z< 4 and discuss possible improvements to our survey strategy.

    more » « less
  5. ABSTRACT We introduce a probabilistic approach to select 6 ≤ $z$ ≤ 8 quasar candidates for spectroscopic follow-up, which is based on density estimation in the high-dimensional space inhabited by the optical and near-infrared photometry. Densities are modelled as Gaussian mixtures with principled accounting of errors using the extreme deconvolution (XD) technique, generalizing an approach successfully used to select lower redshift ($z$ ≤ 3) quasars. We train the probability density of contaminants on 1902 071 7-d flux measurements from the 1076 deg2 overlapping area from the Dark Energy Camera Legacy Survey (DECaLS) ($z$), VIKING (YJHKs), and unWISE (W1W2) imaging surveys, after requiring they dropout of DECaLS g and r, whereas the distribution of high-$z$ quasars are trained on synthetic model photometry. Extensive simulations based on these density distributions and current estimates of the quasar luminosity function indicate that this method achieves a completeness of $\ge 56{{\ \rm per\ cent}}$ and an efficiency of $\ge 5{{\ \rm per\ cent}}$ for selecting quasars at 6 < $z$ < 8 with JAB < 21.5. Among the classified sources are 8 known 6 < $z$ < 7 quasars, of which 2/8 are selected suggesting a completeness $\simeq 25{{\ \rm per\ cent}}$, whereas classifying the 6 known (JAB < 21.5) quasars at $z$ > 7 from the entire sky, we select 5/6 or a completeness of $\simeq 80{{\ \rm per\ cent}}$. The failure to select the majority of 6 < $z$ < 7 quasars arises because our quasar density model is based on an empirical quasar spectral energy distribution model that underestimates the scatter in the distribution of fluxes. This new approach to quasar selection paves the way for efficient spectroscopic follow-up of Euclid quasar candidates with ground-based telescopes and James Webb Space Telescope. 
    more » « less