We present the high-z quasar candidate archive (HzQCA), summarizing the spectroscopic observations of 207 z ≳ 5 quasar candidates using Keck/LRIS, Keck/MOSFIRE, and Keck/NIRES. We identify 14 candidates as z ∼ 6 quasars, with 10 of them newly reported here and 63 candidates as brown dwarfs. In the remaining sources, 79 candidates are unlikely to be quasars; 2 sources are inconclusive; the others could not be fully reduced or extracted. Based on the classifications, we investigate the distributions of quasars and contaminants in colour space with photometry measurements from DELS (z), VIKING/UKIDSS (YJHKs/YJHK), and unWISE (W1W2). We find that the identified brown dwarfs are consistent with the empirical brown dwarf model that is commonly used in quasar candidate selection methods. To refine spectroscopic confirmation strategies, we simulate synthetic spectroscopy of high-z quasars and contaminants for all three instruments. The simulations utilize the spectroscopic data in HzQCA. We predict the required exposure times for quasar confirmation and propose an optimal strategy for spectroscopic follow-up observations. For instance, we demonstrate that we can identify a mJ = 21.5 at z = 7.6 or a mJ = 23.0 at z = 7.0 within 15 min of exposure time with LRIS. With the publication of the HzQCA, we aim to provide guidance for future quasar surveys and candidate classification.
- Award ID(s):
- 1908284
- NSF-PAR ID:
- 10381308
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 515
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 3224 to 3248
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract We present a catalog of 1.4 million photometrically selected quasar candidates in the southern hemisphere over the ∼5000 deg2Dark Energy Survey (DES) wide survey area. We combine optical photometry from the DES second data release (DR2) with available near-infrared (NIR) and the all-sky unWISE mid-infrared photometry in the selection. We build models of quasars, galaxies, and stars with multivariate skew-
t distributions in the multidimensional space of relative fluxes as functions of redshift (or color for stars) and magnitude. Our selection algorithm assigns probabilities for quasars, galaxies, and stars and simultaneously calculates photometric redshifts (photo-z ) for quasar and galaxy candidates. Benchmarking on spectroscopically confirmed objects, we successfully classify (with photometry) 94.7% of quasars, 99.3% of galaxies, and 96.3% of stars when all IR bands (NIRYJHK and WISE W1W2) are available. The classification and photo-z regression success rates decrease when fewer bands are available. Our quasar (galaxy) photo-z quality, defined as the fraction of objects with the difference between the photo-z z p and the spectroscopic redshiftz s , ∣Δz ∣ ≡ ∣z s −z p ∣/(1 +z s ) ≤ 0.1, is 92.2% (98.1%) when all IR bands are available, decreasing to 72.2% (90.0%) using optical DES data only. Our photometric quasar catalog achieves an estimated completeness of 89% and purity of 79% atr < 21.5 (0.68 million quasar candidates), with reduced completeness and purity at 21.5 <r ≲ 24. Among the 1.4 million quasar candidates, 87,857 have existing spectra, and 84,978 (96.7%) of them are spectroscopically confirmed quasars. Finally, we provide quasar, galaxy, and star probabilities for all (0.69 billion) photometric sources in the DES DR2 coadded photometric catalog. -
ABSTRACT Several recent works have focused on the search for bright, high-z quasars (QSOs) in the South. Among them, the QUasars as BRIght beacons for Cosmology in the Southern hemisphere (QUBRICS) survey has now delivered hundreds of new spectroscopically confirmed QSOs selected by means of machine learning algorithms. Building upon the results obtained by introducing the probabilistic random forest (PRF) for the QUBRICS selection, we explore in this work the feasibility of training the algorithm on synthetic data to improve the completeness in the higher redshift bins. We also compare the performances of the algorithm if colours are used as primary features instead of magnitudes. We generate synthetic data based on a composite QSO spectral energy distribution. We first train the PRF to identify QSOs among stars and galaxies, then separate high-z quasar from low-z contaminants. We apply the algorithm on an updated data set, based on SkyMapper DR3, combined with Gaia eDR3, 2MASS, and WISE magnitudes. We find that employing colours as features slightly improves the results with respect to the algorithm trained on magnitude data. Adding synthetic data to the training set provides significantly better results with respect to the PRF trained only on spectroscopically confirmed QSOs. We estimate, on a testing data set, a completeness of $\sim 86{{\ \rm per\ cent}}$ and a contamination of $\sim 36{{\ \rm per\ cent}}$. Finally, 206 PRF-selected candidates were observed: 149/206 turned out to be genuine QSOs with z > 2.5, 41 with z < 2.5, 3 galaxies and 13 stars. The result confirms the ability of the PRF to select high-z quasars in large data sets.
-
ABSTRACT We report the results of the STRong lensing Insights into the Dark Energy Survey (STRIDES) follow-up campaign of the late 2017/early 2018 season. We obtained spectra of 65 lensed quasar candidates with ESO Faint Object Spectrograph and Camera 2 on the NTT and Echellette Spectrograph and Imager on Keck, confirming 10 new lensed quasars and 10 quasar pairs. Eight lensed quasars are doubly imaged with source redshifts between 0.99 and 2.90, one is triply imaged (DESJ0345−2545, z = 1.68), and one is quadruply imaged (quad: DESJ0053−2012, z = 3.8). Singular isothermal ellipsoid models for the doubles, based on high-resolution imaging from SAMI on Southern Astrophysical Research Telescope or Near InfraRed Camera 2 on Keck, give total magnifications between 3.2 and 5.6, and Einstein radii between 0.49 and 1.97 arcsec. After spectroscopic follow-up, we extract multi-epoch grizY photometry of confirmed lensed quasars and contaminant quasar + star pairs from DES data using parametric multiband modelling, and compare variability in each system’s components. By measuring the reduced χ2 associated with fitting all epochs to the same magnitude, we find a simple cut on the less variable component that retains all confirmed lensed quasars, while removing 94 per cent of contaminant systems. Based on our spectroscopic follow-up, this variability information improves selection of lensed quasars and quasar pairs from 34-45 per cent to 51–70 per cent, with most remaining contaminants being star-forming galaxies. Using mock lensed quasar light curves we demonstrate that selection based only on variability will over-represent the quad fraction by 10 per cent over a complete DES magnitude-limited sample, explained by the magnification bias and hence lower luminosity/more variable sources in quads.more » « less
-
ABSTRACT Quasars at redshifts z > 6 are an excellent probe of the formation and evolution of supermassive black holes in the early Universe. The population of radio-luminous quasars is of particular interest, as such quasars could potentially be used to study the neutral intergalactic medium during cosmic reionization via H i 21 cm absorption studies. However, the lack of deep radio observations of z > 6 quasars leaves the population poorly constrained, and suitable candidates for an H i 21 cm absorption study have yet to be found. In this work, we present Jansky Very Large Array (VLA) 1–2 GHz radio continuum observations of 138 quasars at redshifts 6.0 ≤ z < 7.6. We detect the radio continuum emission of the z = 6.1 quasar J1034−1425, with a 1.6 GHz flux density of $170\pm 36\, \mu$Jy. This quasar is radio-quiet with radio-loudness, R ≡ f5 GHz/fν, 4400 Å = 2.4 ± 0.5. In addition, we detect seven other quasars at z > 6, which have previously been characterized in the literature at these frequencies. Using the full sample, we estimate the radio-loud fraction to be $3.8^{+6.2}_{-2.4}\ \hbox{per cent}$, where the uncertainties are 95 per cent confidence intervals. This is lower than recent estimates of the radio-loud fraction in the literature, but is still marginally consistent with no redshift evolution of the radio-loud fraction. We explore the undetected quasar population by stacking their continuum images at their optical positions and obtain a median stacked flux density of 13.8 ± 3.9 µJy and luminosity of log L5 GHz/(W Hz−1) = 24.2 ± 0.1.