Nonverbal interactions are a key component of human communication. Since robots have become significant by trying to get close to human beings, it is important that they follow social rules governing the use of space. Prior research has conceptualized personal space as physical zones which are based on static distances. This work examined how preferred interaction distance can change given different interaction scenarios. We conducted a user study using three different robot heights. We also examined the difference in preferred interaction distance when a robot approaches a human and, conversely, when a human approaches a robot. Factors included in quantitative analysis are the participants' gender, robot's height, and method of approach. Subjective measures included human comfort and perceived safety. The results obtained through this study shows that robot height, participant gender and method of approach were significant factors influencing measured proxemic zones and accordingly participant comfort. Subjective data showed that experiment respondents regarded robots in a more favorable light following their participation in this study. Furthermore, the NAO was perceived most positively by respondents according to various metrics and the PR2 Tall, most negatively. 
                        more » 
                        « less   
                    
                            
                            Learning and Comfort in Human–Robot Interaction: A Review
                        
                    
    
            Collaborative robots provide prospective and great solutions to human–robot cooperative tasks. In this paper, we present a comprehensive review for two significant topics in human–robot interaction: robots learning from demonstrations and human comfort. The collaboration quality between the human and the robot has been improved largely by taking advantage of robots learning from demonstrations. Human teaching and robot learning approaches with their corresponding applications are investigated in this review. We also discuss several important issues that need to be paid attention to and addressed in the human–robot teaching–learning process. After that, the factors that may affect human comfort in human–robot interaction are described and discussed. Moreover, the measures utilized to improve human acceptance of robots and human comfort in human–robot interaction are also presented and discussed. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1845779
- PAR ID:
- 10175670
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 9
- Issue:
- 23
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 5152
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            For robots to seamlessly interact with humans, we first need to make sure that humans and robots understand one another. Diverse algorithms have been developed to enable robots to learn from humans (i.e., transferring information from humans to robots). In parallel, visual, haptic, and auditory communication interfaces have been designed to convey the robot’s internal state to the human (i.e., transferring information from robots to humans). Prior research often separates these two directions of information transfer, and focuses primarily on either learning algorithms or communication interfaces. By contrast, in this survey we take an interdisciplinary approach to identify common themes and emerging trends that close the loop between learning and communication. Specifically, we survey state-of-the-art methods and outcomes for communicating a robot’s learning back to the human teacher during human-robot interaction. This discussion connects human-in-the-loop learning methods and explainable robot learning with multimodal feedback systems and measures of human-robot interaction. We find that—when learning and communication are developed together—the resulting closed-loop system can lead to improved human teaching, increased human trust, and human-robot co-adaptation. The paper includes a perspective on several of the interdisciplinary research themes and open questions that could advance how future robots communicate their learning to everyday operators. Finally, we implement a selection of the reviewed methods in a case study where participants kinesthetically teach a robot arm. This case study documents and tests an integrated approach for learning in ways that can be communicated, conveying this learning across multimodal interfaces, and measuring the resulting changes in human and robot behavior.more » « less
- 
            Turn-taking is a fundamental behavior during human interactions and robots must be capable of turn-taking to interact with humans. Current state-of-the-art approaches in turn-taking focus on developing general models to predict the end of turn (EoT) across all contexts. This demands an all-inclusive verbal and non-verbal behavioral dataset from all possible contexts of interaction. Before robot deployment, gathering such a dataset may be infeasible and/or impractical. More importantly, a robot needs to predict the EoT and decide on the best time to take a turn (i.e, start speaking). In this research, we present a learning from demonstration (LfD) system for a robot to learn from demonstrations, after it has been deployed, to make decisions on the appropriate time for taking a turn within specific social interaction contexts. The system captures demonstrations of turn-taking during social interactions and uses these demonstrations to train a LSTM RNN based model to replicate the turn-taking behavior of the demonstrator. We evaluate the system for teaching the turn-taking behavior of an interviewer during a job interview context. Furthermore, we investigate the efficacy of verbal, prosodic, and gestural cues for deciding when to begin a turn.more » « less
- 
            Learning companion robots can provide personalized learning interactions to engage students in many domains including STEM. For successful interactions, students must feel comfortable and engaged. We describe an experiment with a learning companion robot acting as a teachable robot; based on human-to-human peer tutoring, students teach the robot how to solve math problems. We compare student attitudes of comfort, attention, engagement, motivation, and physical proximity for two dyadic stance formations: a face-to-face stance and a side-by-side stance. In human-robot interaction experiments, it is common for dyads to assume a face-to-face stance, while in human-to-human peer tutoring, it is common for dyads to sit in side-by-side as well as face-to-face formations. We find that students in the face-to-face stance report stronger feelings of comfort and attention, compared to students in the side-by-side stance. We find no difference between stances for feelings of engagement, motivation, and physical proximity.more » « less
- 
            We study the problem of cross-embodiment inverse reinforcement learning, where we wish to learn a reward function from video demonstrations in one or more embodiments and then transfer the learned reward to a different embodiment (e.g., different action space, dynamics, size, shape, etc.). Learning reward functions that transfer across embodiments is important in settings such as teaching a robot a policy via human video demonstrations or teaching a robot to imitate a policy from another robot with a different embodiment. However, prior work has only focused on cases where near-optimal demonstrations are available, which is often difficult to ensure. By contrast, we study the setting of cross-embodiment reward learning from mixed-quality demonstrations. We demonstrate that prior work struggles to learn generalizable reward representations when learning from mixed-quality data. We then analyze several techniques that leverage human feedback for representation learning and alignment to enable effective cross-embodiment learning. Our results give insight into how different representation learning techniques lead to qualitatively different reward shaping behaviors and the importance of human feedback when learning from mixed-quality, mixed-embodiment data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    