skip to main content


Title: Factors Influencing The Human Preferred Interaction Distance
Nonverbal interactions are a key component of human communication. Since robots have become significant by trying to get close to human beings, it is important that they follow social rules governing the use of space. Prior research has conceptualized personal space as physical zones which are based on static distances. This work examined how preferred interaction distance can change given different interaction scenarios. We conducted a user study using three different robot heights. We also examined the difference in preferred interaction distance when a robot approaches a human and, conversely, when a human approaches a robot. Factors included in quantitative analysis are the participants' gender, robot's height, and method of approach. Subjective measures included human comfort and perceived safety. The results obtained through this study shows that robot height, participant gender and method of approach were significant factors influencing measured proxemic zones and accordingly participant comfort. Subjective data showed that experiment respondents regarded robots in a more favorable light following their participation in this study. Furthermore, the NAO was perceived most positively by respondents according to various metrics and the PR2 Tall, most negatively.  more » « less
Award ID(s):
1719027
NSF-PAR ID:
10188820
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Robot and Human Interactive Communication
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The attribution of human-like characteristics onto humanoid robots has become a common practice in Human-Robot Interaction by designers and users alike. Robot gendering, the attribution of gender onto a robotic platform via voice, name, physique, or other features is a prevalent technique used to increase aspects of user acceptance of robots. One important factor relating to acceptance is user trust. As robots continue to integrate themselves into common societal roles, it will be critical to evaluate user trust in the robot's ability to perform its job. This paper examines the relationship among occupational gender-roles, user trust and gendered design features of humanoid robots. Results from the study indicate that there was no significant difference in the perception of trust in the robot's competency when considering the gender of the robot. This expands the findings found in prior efforts that suggest performance-based factors have larger influences on user trust than the robot's gender characteristics. In fact, our study suggests that perceived occupational competency is a better predictor for human trust than robot gender or participant gender. As such, gendering in robot design should be considered critically in the context of the application by designers. Such precautions would reduce the potential for robotic technologies to perpetuate societal gender stereotypes. 
    more » « less
  2. Objective

    This study investigated the effects of different approach directions, movement speeds, and trajectories of a co-robot’s end-effector on workers’ mental stress during handover tasks.

    Background

    Human–robot collaboration (HRC) is gaining attention in industry and academia. Understanding robot-related factors causing mental stress is crucial for designing collaborative tasks that minimize workers’ stress.

    Methods

    Mental stress in HRC tasks was measured subjectively through self-reports and objectively through galvanic skin response (GSR) and electromyography (EMG). Robot-related factors including approach direction, movement speed, and trajectory were analyzed.

    Results

    Movement speed and approach direction had significant effects on subjective ratings, EMG, and GSR. High-speed and approaching from one side consistently resulted in higher fear, lower comfort, and predictability, as well as increased EMG and GSR signals, indicating higher mental stress. Movement trajectory affected GSR, with the sudden stop condition eliciting a stronger response compared to the constrained trajectory. Interaction effects between speed and approach direction were observed for “surprise” and “predictability” subjective ratings. At high speed, approach direction did not significantly differ, but at low speeds, approaching from the side was found to be more surprising and unpredictable compared to approaching from the front.

    Conclusion

    The mental stress of workers during HRC is lower when the robot’s end effector (1) approaches a worker within the worker’s field of view, (2) approaches at a lower speed, or (3) follows a constrained trajectory.

    Application

    The outcome of this study can serve as a guide to design HRC tasks with a low level of workers’ mental stress.

     
    more » « less
  3. null (Ed.)
    As Human-Robot Interaction becomes more sophisticated, measuring the performance of a social robot is crucial to gauging the effectiveness of its behavior. However, social behavior does not necessarily have strict performance metrics that other autonomous behavior can have. Indeed, when considering robot navigation, a socially-appropriate action may be one that is sub-optimal, resulting in longer paths, longer times to get to a goal. Instead, we can rely on subjective assessments of the robot's social performance by a participant in a robot interaction or by a bystander. In this paper, we use the newly-validated Perceived Social Intelligence (PSI) scale to examine the perception of non-humanoid robots in non-verbal social scenarios. We show that there are significant differences between the perceived social intelligence of robots exhibiting SAN behavior compared to one using a traditional navigation planner in scenarios such as waiting in a queue and group behavior. 
    more » « less
  4. This paper presents a novel architecture to attain a Unified Planner for Socially-aware Navigation (UP-SAN) and explains its need in Socially Assistive Robotics (SAR) applications. Our approach emphasizes interpersonal distance and how spatial communication can be used to build a unified planner for a human-robot collaborative environment. Socially-Aware Navigation (SAN) is vital to make humans feel comfortable and safe around robots, HRI studies have show that the importance of SAN transcendent safety and comfort. SAN plays a crucial role in perceived intelligence, sociability and social capacity of the robot thereby increasing the acceptance of the robots in public places. Human environments are very dynamic and pose serious social challenges to the robots indented for human interactions. For the robots to cope with the changing dynamics of a situation, there is a need to infer intent and detect changes in the interaction context. SAN has gained immense interest in the social robotics community; to the best of our knowledge, however, there is no planner that can adapt to different interaction contexts spontaneously after autonomously sensing that context. Most of the recent efforts involve social path planning for a single context. In this work, we propose a novel approach for a Unified Planner for SAN that can plan and execute trajectories that are human-friendly for an autonomously sensed interaction context. Our approach augments the navigation stack of Robot Operating System (ROS) utilizing machine learn- ing and optimization tools. We modified the ROS navigation stack using a machine learning-based context classifier and a PaCcET based local planner for us to achieve the goals of UP- SAN. We discuss our preliminary results and concrete plans on putting the pieces together in achieving UP-SAN. 
    more » « less
  5. Background

    As mobile health (mHealth) studies become increasingly productive owing to the advancements in wearable and mobile sensor technology, our ability to monitor and model human behavior will be constrained by participant receptivity. Many health constructs are dependent on subjective responses, and without such responses, researchers are left with little to no ground truth to accompany our ever-growing biobehavioral data. This issue can significantly impact the quality of a study, particularly for populations known to exhibit lower compliance rates. To address this challenge, researchers have proposed innovative approaches that use machine learning (ML) and sensor data to modify the timing and delivery of surveys. However, an overarching concern is the potential introduction of biases or unintended influences on participants’ responses when implementing new survey delivery methods.

    Objective

    This study aims to demonstrate the potential impact of an ML-based ecological momentary assessment (EMA) delivery system (using receptivity as the predictor variable) on the participants’ reported emotional state. We examine the factors that affect participants’ receptivity to EMAs in a 10-day wearable and EMA–based emotional state–sensing mHealth study. We study the physiological relationships indicative of receptivity and affect while also analyzing the interaction between the 2 constructs.

    Methods

    We collected data from 45 healthy participants wearing 2 devices measuring electrodermal activity, accelerometer, electrocardiography, and skin temperature while answering 10 EMAs daily, containing questions about perceived mood. Owing to the nature of our constructs, we can only obtain ground truth measures for both affect and receptivity during responses. Therefore, we used unsupervised and supervised ML methods to infer affect when a participant did not respond. Our unsupervised method used k-means clustering to determine the relationship between physiology and receptivity and then inferred the emotional state during nonresponses. For the supervised learning method, we primarily used random forest and neural networks to predict the affect of unlabeled data points as well as receptivity.

    Results

    Our findings showed that using a receptivity model to trigger EMAs decreased the reported negative affect by >3 points or 0.29 SDs in our self-reported affect measure, scored between 13 and 91. The findings also showed a bimodal distribution of our predicted affect during nonresponses. This indicates that this system initiates EMAs more commonly during states of higher positive emotions.

    Conclusions

    Our results showed a clear relationship between affect and receptivity. This relationship can affect the efficacy of an mHealth study, particularly those that use an ML algorithm to trigger EMAs. Therefore, we propose that future work should focus on a smart trigger that promotes EMA receptivity without influencing affect during sampled time points.

     
    more » « less