skip to main content

Title: Factors Influencing The Human Preferred Interaction Distance
Nonverbal interactions are a key component of human communication. Since robots have become significant by trying to get close to human beings, it is important that they follow social rules governing the use of space. Prior research has conceptualized personal space as physical zones which are based on static distances. This work examined how preferred interaction distance can change given different interaction scenarios. We conducted a user study using three different robot heights. We also examined the difference in preferred interaction distance when a robot approaches a human and, conversely, when a human approaches a robot. Factors included in quantitative analysis are the participants' gender, robot's height, and method of approach. Subjective measures included human comfort and perceived safety. The results obtained through this study shows that robot height, participant gender and method of approach were significant factors influencing measured proxemic zones and accordingly participant comfort. Subjective data showed that experiment respondents regarded robots in a more favorable light following their participation in this study. Furthermore, the NAO was perceived most positively by respondents according to various metrics and the PR2 Tall, most negatively.
Authors:
; ; ;
Award ID(s):
1719027
Publication Date:
NSF-PAR ID:
10188820
Journal Name:
International Conference on Robot and Human Interactive Communication
Page Range or eLocation-ID:
1 to 7
Sponsoring Org:
National Science Foundation
More Like this
  1. The attribution of human-like characteristics onto humanoid robots has become a common practice in Human-Robot Interaction by designers and users alike. Robot gendering, the attribution of gender onto a robotic platform via voice, name, physique, or other features is a prevalent technique used to increase aspects of user acceptance of robots. One important factor relating to acceptance is user trust. As robots continue to integrate themselves into common societal roles, it will be critical to evaluate user trust in the robot's ability to perform its job. This paper examines the relationship among occupational gender-roles, user trust and gendered design features of humanoid robots. Results from the study indicate that there was no significant difference in the perception of trust in the robot's competency when considering the gender of the robot. This expands the findings found in prior efforts that suggest performance-based factors have larger influences on user trust than the robot's gender characteristics. In fact, our study suggests that perceived occupational competency is a better predictor for human trust than robot gender or participant gender. As such, gendering in robot design should be considered critically in the context of the application by designers. Such precautions would reduce the potential formore »robotic technologies to perpetuate societal gender stereotypes.« less
  2. As Human-Robot Interaction becomes more sophisticated, measuring the performance of a social robot is crucial to gauging the effectiveness of its behavior. However, social behavior does not necessarily have strict performance metrics that other autonomous behavior can have. Indeed, when considering robot navigation, a socially-appropriate action may be one that is sub-optimal, resulting in longer paths, longer times to get to a goal. Instead, we can rely on subjective assessments of the robot's social performance by a participant in a robot interaction or by a bystander. In this paper, we use the newly-validated Perceived Social Intelligence (PSI) scale to examine the perception of non-humanoid robots in non-verbal social scenarios. We show that there are significant differences between the perceived social intelligence of robots exhibiting SAN behavior compared to one using a traditional navigation planner in scenarios such as waiting in a queue and group behavior.
  3. This paper presents a novel architecture to attain a Unified Planner for Socially-aware Navigation (UP-SAN) and explains its need in Socially Assistive Robotics (SAR) applications. Our approach emphasizes interpersonal distance and how spatial communication can be used to build a unified planner for a human-robot collaborative environment. Socially-Aware Navigation (SAN) is vital to make humans feel comfortable and safe around robots, HRI studies have show that the importance of SAN transcendent safety and comfort. SAN plays a crucial role in perceived intelligence, sociability and social capacity of the robot thereby increasing the acceptance of the robots in public places. Human environments are very dynamic and pose serious social challenges to the robots indented for human interactions. For the robots to cope with the changing dynamics of a situation, there is a need to infer intent and detect changes in the interaction context. SAN has gained immense interest in the social robotics community; to the best of our knowledge, however, there is no planner that can adapt to different interaction contexts spontaneously after autonomously sensing that context. Most of the recent efforts involve social path planning for a single context. In this work, we propose a novel approach for a Unifiedmore »Planner for SAN that can plan and execute trajectories that are human-friendly for an autonomously sensed interaction context. Our approach augments the navigation stack of Robot Operating System (ROS) utilizing machine learn- ing and optimization tools. We modified the ROS navigation stack using a machine learning-based context classifier and a PaCcET based local planner for us to achieve the goals of UP- SAN. We discuss our preliminary results and concrete plans on putting the pieces together in achieving UP-SAN.« less
  4. Collaborative robots provide prospective and great solutions to human–robot cooperative tasks. In this paper, we present a comprehensive review for two significant topics in human–robot interaction: robots learning from demonstrations and human comfort. The collaboration quality between the human and the robot has been improved largely by taking advantage of robots learning from demonstrations. Human teaching and robot learning approaches with their corresponding applications are investigated in this review. We also discuss several important issues that need to be paid attention to and addressed in the human–robot teaching–learning process. After that, the factors that may affect human comfort in human–robot interaction are described and discussed. Moreover, the measures utilized to improve human acceptance of robots and human comfort in human–robot interaction are also presented and discussed.
  5. This article examines how people respond to robot-administered verbal and physical punishments. Human participants were tasked with sorting colored chips under time pressure and were punished by a robot when they made mistakes, such as inaccurate sorting or sorting too slowly. Participants were either punished verbally by being told to stop sorting for a fixed time, or physically, by restraining their ability to sort with an in-house crafted robotic exoskeleton. Either a human experimenter or the robot exoskeleton administered punishments, with participant task performance and subjective perceptions of their interaction with the robot recorded. The results indicate that participants made more mistakes on the task when under the threat of robot-administered punishment. Participants also tended to comply with robot-administered punishments at a lesser rate than human-administered punishments, which suggests that humans may not afford a robot the social authority to administer punishments. This study also contributes to our understanding of compliance with a robot and whether people accept a robot’s authority to punish. The results may influence the design of robots placed in authoritative roles and promote discussion of the ethical ramifications of robot-administered punishment.