skip to main content

Title: Investigation of GTP-dependent dimerization of G12X K-Ras variants using ultraviolet photodissociation mass spectrometry
Mutations in the GTPase enzyme K-Ras, specifically at codon G12, remain the most common genetic alterations in human cancers. The mechanisms governing activation of downstream signaling pathways and how they relate back to the identity of the mutation have yet to be completely defined. Here we use native mass spectrometry (MS) combined with ultraviolet photodissociation (UVPD) to investigate the impact of three G12X mutations (G12C, G12V, G12S) on the homodimerization of K-Ras as well as heterodimerization with a downstream effector protein, Raf. Electrospray ionization (ESI) was used to transfer complexes of WT or G12X K-Ras bound to guanosine 5′-diphosphate (GDP) or GppNHp (non-hydrolyzable analogue of GTP) into the gas phase. Relative abundances of homo- or hetero-dimer complexes were estimated from ESI-MS spectra. K-Ras + Raf heterocomplexes were activated with UVPD to probe structural changes responsible for observed differences in the amount of heterocomplex formed for each variant. Holo (ligand-bound) fragment ions resulting from photodissociation suggest the G12X mutants bind Raf along the expected effector binding region (β-interface) but may interact with Raf via an alternative α-interface as well. Variations in backbone cleavage efficiencies during UV photoactivation of each variant were used to relate mutation identity to structural changes that might more » impact downstream signaling. Specifically, oncogenic upregulation for hydrogen-bonding amino acid substitutions (G12C, G12S) is achieved by stabilizing β-interface interactions with Raf, while a bulkier, hydrophobic G12V substitution leads to destabilization of this interface and instead increases the proximity of residues along the α-helical bundles. This study deciphers new pieces of the complex puzzle of how different K-Ras mutations exert influence in downstream signaling. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Chemical Science
Page Range or eLocation-ID:
8025 to 8034
Sponsoring Org:
National Science Foundation
More Like this
  1. Dynamic allostery emphasizes a role of entropy change manifested as a sole change in protein fluctuations without structural changes. This kind of entropy-driven effect remains largely understudied. The most significant examples involve protein-ligand interactions, leaving protein-protein interactions, which are critical in signaling and other cellular events, largely unexplored. Here we study an example of how protein-protein interaction (binding of Ras to the Ras binding domain [RBD] of the effector protein Raf) affects a subsequent protein association process (Ras dimerization) by quenching Ras internal motions through dynamic allostery. We also investigate the influence of point mutations or ambient temperature, respectively, on the protein dynamics and interaction of two other systems: in adenylate kinase (ADK) and in the EphA2 SAM:Ship2 SAM complex. Based on these examples, we postulate that there are different ways in which dynamic-change-driven protein interactions are manifested and that it is likely a general biological phenomenon.
  2. Abstract Motivation

    Most proteins perform their biological functions through interactions with other proteins in cells. Amino acid mutations, especially those occurring at protein interfaces, can change the stability of protein–protein interactions (PPIs) and impact their functions, which may cause various human diseases. Quantitative estimation of the binding affinity changes (ΔΔGbind) caused by mutations can provide critical information for protein function annotation and genetic disease diagnoses.


    We present SSIPe, which combines protein interface profiles, collected from structural and sequence homology searches, with a physics-based energy function for accurate ΔΔGbind estimation. To offset the statistical limits of the PPI structure and sequence databases, amino acid-specific pseudocounts were introduced to enhance the profile accuracy. SSIPe was evaluated on large-scale experimental data containing 2204 mutations from 177 proteins, where training and test datasets were stringently separated with the sequence identity between proteins from the two datasets below 30%. The Pearson correlation coefficient between estimated and experimental ΔΔGbind was 0.61 with a root-mean-square-error of 1.93 kcal/mol, which was significantly better than the other methods. Detailed data analyses revealed that the major advantage of SSIPe over other traditional approaches lies in the novel combination of the physical energy function with the new knowledge-based interface profile. SSIPe also considerablymore »outperformed a former profile-based method (BindProfX) due to the newly introduced sequence profiles and optimized pseudocount technique that allows for consideration of amino acid-specific prior mutation probabilities.

    Availability and implementation

    Web-server/standalone program, source code and datasets are freely available at and

    Supplementary information

    Supplementary data are available at Bioinformatics online.

    « less
  3. Abstract Background

    Alternative RNA splicing is widely dysregulated in cancers including lung adenocarcinoma, where aberrant splicing events are frequently caused by somatic splice site mutations or somatic mutations of splicing factor genes. However, the majority of mis-splicing in cancers is unexplained by these known mechanisms. We hypothesize that the aberrant Ras signaling characteristic of lung cancers plays a role in promoting the alternative splicing observed in tumors.


    We recently performed transcriptome and proteome profiling of human lung epithelial cells ectopically expressing oncogenic KRAS and another cancer-associated Ras GTPase, RIT1. Unbiased analysis of phosphoproteome data identified altered splicing factor phosphorylation in KRAS-mutant cells, so we performed differential alternative splicing analysis using rMATS to identify significantly altered isoforms in lung epithelial cells. To determine whether these isoforms were uniquely regulated by KRAS, we performed a large-scale splicing screen in which we generated over 300 unique RNA sequencing profiles of isogenic A549 lung adenocarcinoma cells ectopically expressing 75 different wild-type or variant alleles across 28 genes implicated in lung cancer.


    Mass spectrometry data showed widespread downregulation of splicing factor phosphorylation in lung epithelial cells expressing mutant KRAS compared to cells expressing wild-type KRAS. We observed alternative splicing in the same cells, with 2196 and 2416more »skipped exon events in KRASG12Vand KRASQ61Hcells, respectively, 997 of which were shared (p < 0.001 by hypergeometric test). In the high-throughput splicing screen, mutant KRAS induced the greatest number of differential alternative splicing events, second only to the RNA binding protein RBM45 and its variant RBM45M126I. We identified ten high confidence cassette exon events across multiple KRAS variants and cell lines. These included differential splicing of the Myc Associated Zinc Finger (MAZ). As MAZ regulates expression of KRAS, this splice variant may be a mechanism for the cell to modulate wild-type KRAS levels in the presence of oncogenic KRAS.


    Proteomic and transcriptomic profiling of lung epithelial cells uncovered splicing factor phosphorylation and mRNA splicing events regulated by oncogenic KRAS. These data suggest that in addition to widespread transcriptional changes, the Ras signaling pathway can promote post-transcriptional splicing changes that may contribute to oncogenic processes.

    « less
  4. Ras dimerization is critical for Raf activation. Here we show that the Ras binding domain of Raf (Raf-RBD) induces robust Ras dimerization at low surface densities on supported lipid bilayers and, to a lesser extent, in solution as observed by size exclusion chromatography and confirmed by SAXS. Community network analysis based on molecular dynamics simulations shows robust allosteric connections linking the two Raf-RBD D113 residues located in the Galectin scaffold protein binding site of each Raf-RBD molecule and 85 Å apart on opposite ends of the dimer complex. Our results suggest that Raf-RBD binding and Ras dimerization are concerted events that lead to a high-affinity signaling complex at the membrane that we propose is an essential unit in the macromolecular assembly of higher order Ras/Raf/Galectin complexes important for signaling through the Ras/Raf/MEK/ERK pathway.

  5. Activation of the epidermal growth factor (EGF) receptor (EGFR) at the cell surface initiates signaling through the RAS-RAF-MAPK/ERK1/2 pathway and receptor endocytosis. Whether this signaling continues from endosomes remains unclear, because RAS is predominantly located on the plasma membrane, and the localization of endogenous RAF kinases, downstream effectors of RAS, is not defined. To examine RAF localization, we labeled endogenous RAF1 with mVenus using gene editing. From 10 to 15% of RAF1-mVenus (<2000 molecules/cell), which was initially entirely cytosolic, transiently translocated to the plasma membrane after EGF stimulation. Following an early burst of translocation, the membrane-associated RAF1-mVenus was undetectable by microscopy or subcellular fractionation, and this pool was estimated to be <200 molecules per cell. In contrast, persistent EGF-dependent translocation of RAF1-mVenus to the plasma membrane was driven by the RAF inhibitor sorafenib, which increases the affinity of Ras-GTP:RAF1 interactions. RAF1-mVenus was not found in EGFR-containing endosomes under any conditions. Computational modeling of RAF1 dynamics revealed that RAF1 membrane abundance is controlled most prominently by association and dissociation rates from RAS-GTP and by RAS-GTP concentration. The model further suggested that the relatively protracted activation of the RAF-MEK1/2-ERK1/2 module, in comparison with RAF1 membrane localization, may involve multiple rounds of cytosolicmore »RAF1 rebinding to active RAS at the membrane.« less