skip to main content


Title: Viscous anisotropy of textured olivine aggregates, Part 1: Measurement of the magnitude and evolution of anisotropy
Award ID(s):
1255620
NSF-PAR ID:
10175817
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Earth and Planetary Science Letters
Volume:
445
Issue:
C
ISSN:
0012-821X
Page Range / eLocation ID:
92 to 103
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many researchers have used the birefringence of P‑to‑S converted waves from the Moho discontinuity to constrain the anisotropy of Earth’s crust. However, this practice ignores the substantial influence that anisotropy has on the initial amplitude of the converted wave, which adds to the splitting acquired during its propagation from Moho to the seismometer. We find that large variations in Ps birefringence estimates with back-azimuth occur theoretically in the presence of P‑wave anisotropy, which normally accompanies S‑wave anisotropy. The variations are largest for crustal anisotropy with a tilted axis of symmetry, a geometry that is often neglected in birefringence interpretations, but is commonly found in Earth’s crust. We simulated globally-distributed P‑coda datasets for 36 distinct 4‑layer crustal models with combinations of elliptical shear anisotropy or compressional anisotropy, and also incorporated the higher-order anisotropic Backus parameter C. We tested both horizontal and tilted symmetry-axis geometries and tested the birefringence tradeoff associated with Ps converted phases at the top and bottom of a thin high‑ or low‑velocity basal layer. We computed composite receiver functions (RFs) with harmonic regression over back azimuth, using multipletaper correlation with moveout corrections for the epicentral distances of 471 events, to simulate a realistic data set. We estimate Ps birefringence from the radial and transverse RFs, a strategy that is similar to previous studies. We find that Ps splitting can be a useful indicator of bulk crustal anisotropy only under restricted circumstance, either in media with no compressional anisotropy, or if the symmetry axis is horizontal throughout. In other, more-realistic cases, the inferred fast polarization of Ps birefringence estimated from synthetic RFs tends either to drift with back-azimuth, form weak penalty-function minima, or return splitting times that depend on the thickness of an anisotropic layer, rather than the birefringence accumulated within it.  

     
    more » « less
  2. Abstract

    Several types or grain sizes of ferromagnetic minerals can contribute to a rock's remanence and anisotropy of remanence. Each subpopulation may have a different fabric. Measuring anisotropy of partial anhysteretic remanent magnetization (ApARM) allows one to determine the anisotropy contribution of subpopulations with different coercivity distributions. Separating these contributions to remanence anisotropy can provide information about early versus late stages of deformation in fabric studies and is the basis for improved anisotropy corrections in paleomagnetic studies. Unfortunately, collecting multiple ApARM tensors on each specimen is time‐consuming and not often done. Measuring a smaller number of carefully chosen ApARM tensors and obtaining the remaining tensors of interest by tensor calculation would be more efficient. This can only be done, however, when ApARM tensors are additive. Here we investigate the additivity of ApARM tensors in a range of lithologies, by measuring a total of seven ApARM and anisotropy of anhysteretic remanent magnetization (AARM) tensors for each specimen, and comparing the tensors calculated from a combination of ApARM tensors to the corresponding measured AARM. Differences in principal directions between measured and calculated tensors are often smaller than the confidence angles of the measurements. Mean anhysteretic remanences are additive to within ±5%. The anisotropy degree varies by ±30% (k′) or ±0.15 (P), and the shape parameterUby ±0.4. These error limits will help to determine whether or not it is necessary to measure each ApARM tensor in future fabric or paleomagnetic studies, or if these tensors can be calculated from a smaller set of measurements.

     
    more » « less