skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Permeability Anisotropy of Foliated Glacier Ice
Abstract Within the temperate ice of ice stream shear margins, high strain and accompanying recrystallization likely result in longitudinal foliation characterized by thin, steeply dipping ice layers with distinct variations in grain size and bubble content. The sensitivity of ice permeability to these factors, particularly grain size, implies that foliation causes shear‐margin ice to be hydraulically anisotropic. In this study, the permeability of foliated ice is measured in disks cut from cores from Athabasca Glacier, allowing permeability anisotropy to be assessed. We collected cores oriented normal and parallel to foliation from beneath the weathered crust of the glacier. Permeability values range from approximately  m2and correlate with the textures and orientations of foliation layers. Results indicate that the anisotropic permeability of foliated ice can be approximated using a model that incorporates an empirical grain‐size/permeability relationship and a model of vein clogging by air bubbles. For water flow parallel to foliation, the arithmetic mean of the area‐weighted permeability closely approximates the bulk permeability; for flow perpendicular to foliation, measurements agree with the harmonic mean permeability, weighted to the thickness of each layer. These findings imply hydraulic anisotropy spanning several orders of magnitude in temperate glacier ice, with water flux governed by the most and least permeable layers in the flow‐parallel and flow‐perpendicular cases, respectively.  more » « less
Award ID(s):
2129252
PAR ID:
10598082
Author(s) / Creator(s):
;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
130
Issue:
3
ISSN:
2169-9003
Subject(s) / Keyword(s):
Temperate ice foliation permeability ice streams
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To better constrain meltwater transport and ice viscosity in temperate glaciers, particularly in ice stream shear margins, we use a custom permeameter to study the untested model relationship between the permeability of temperate ice and its liquid water content. The permeability of lab-made ice of two mean grain diameters (1.8 and 4.2 mm) is measured, and water content is controlled with the ice salinity and measured calorimetrically. Fluorescein dye is added to through-flowing, chilled water to highlight flow pathways through the ice after experiments. As predicted by a simple model, permeability increases with approximately the square of the water content and by about three orders of magnitude across water contents of 0.1–4.4%. However, permeability values are less than those of the model by average factors of 2.6 and 4.1 for the finer and coarser ice, respectively. This discrepancy is likely due to tortuous, truncated or air-clogged veins. The order-of-magnitude agreement between measured and modeled values may indicate that reduced permeability from these factors is nearly compensated by preferential flow in oversized veins that are isolated or arborescent. Both kinds of preferred flow pathways are observed but the latter only in fine-grained ice at water contents > 2%. 
    more » « less
  2. Accurately modeling the deformation of temperate glacier ice, which is at its pressure-melting temperature and contains liquid water at grain boundaries, is essential for predicting ice sheet discharge to the ocean and associated sea-level rise. Central to such modeling is Glen’s flow law, in which strain rate depends on stress raised to a power ofn= 3 to 4. In sharp contrast to this nonlinearity, we found by conducting large-scale, shear-deformation experiments that temperate ice is linear-viscous (n ≈1.0) over common ranges of liquid water content and stress expected near glacier beds and in ice-stream margins. This linearity is likely caused by diffusive pressure melting and refreezing at grain boundaries and could help to stabilize modeled responses of ice sheets to shrinkage-induced stress increases. 
    more » « less
  3. Abstract Results of ice-stream models that treat temperate ice deformation as a two-phase flow are sensitive to the ice permeability. We have constructed and begun using a custom, falling-head permeameter for measuring the permeability of temperate, polycrystalline ice. Chilled water is passed through an ice disk that is kept at the pressure-melting temperature while the rate of head decrease indicates the permeability. Fluorescein dye in the water allows water-vein geometry to be studied using fluorescence microscopy. Water flow over durations of seconds to hours is Darcian, and for grain diameter d increasing from 1.7 to 8.9 mm, average permeability decreases from 2 × 10 −12 to 4 × 10−15 m 2. In tests with dye on fine ( d= 2 mm) and coarse (d = 7 mm) ice, average area-weighted vein radii are nearly equal, 41 and 34 μm, respectively. These average radii, if included in a theory slightly modified from Nye and Frank (1973), yield permeability values within a factor of 2.0 of best-fit values based on regression of the data. Permeability values depend on d −3.4, rather than d−2 as predicted by models if vein radii are considered independent of d. In future experiments, the dependence of permeability on liquid water content will be measured. 
    more » « less
  4. Abstract Basal ice of glaciers and ice sheets frequently contains a well-developed stratification of distinct, semi-continuous, alternating layers of debris-poor and debris-rich ice. Here, the nature and distribution of shear within stratified basal ice are assessed through the anisotropy of magnetic susceptibility (AMS) of samples collected from Matanuska Glacier, Alaska. Generally, the AMS reveals consistent moderate-to-strong fabrics reflecting simple shear in the direction of ice flow; however, AMS is also dependent upon debris content and morphology. While sample anisotropy is statistically similar throughout the sampled section, debris-rich basal ice composed of semi-continuous mm-scale layers (the stratified facies ) possesses well-defined triaxial to oblate fabrics reflecting shear in the direction of ice flow, whereas debris-poor ice containing mm-scale star-shaped silt aggregates (the suspended facies ) possesses nearly isotropic fabrics. Thus, deformation within the stratified basal ice appears concentrated in debris-rich layers, likely the result of decreased crystal size and greater availability of unfrozen water associated with high debris content. These results suggest that variations in debris-content over small spatial scales influence ice rheology and deformation in the basal zone. 
    more » « less
  5. Abstract Seismology is increasingly used to infer the magnitude and direction of glacial ice flow. However, the effects of interstitial meltwater on seismic properties remain poorly constrained. Here, we extend previous studies on seismic anisotropy in temperate ices to consider the role of melt preferred orientation (MPO). We used the ELLE numerical toolbox to simulate microstructural shear deformation of temperate ice with variable MPO strength and orientation, and calculated the effective seismic properties of these numerical ice‐melt aggregates. Our models demonstrate that even 3.5% melt volume is sufficient to rotate fast directions by up to 90°, to increase Vp anisotropy by up to +110%, and to modify Vs anisotropy by −9 to +36%. These effects are especially prominent at strain rates ≥3.17 × 10−12 s−1. MPO may thus obscure the geophysical signatures of temperate ice flow in regions of rapid ice discharge, and is therefore pivotal for understanding ice mass loss. 
    more » « less