- Award ID(s):
- 1838733
- PAR ID:
- 10175826
- Date Published:
- Journal Name:
- EuroSys
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We introduce the scheduler subversion problem, where lock usage patterns determine which thread runs, thereby subverting CPU scheduling goals. To mitigate this problem, we introduce Scheduler-Cooperative Locks (SCLs), a new family of locking primitives that controls lock usage and thus aligns with system-wide scheduling goals; our initial work focuses on proportional share schedulers. Unlike existing locks, SCLs provide an equal (or proportional) time window called lock opportunity within which each thread can acquire the lock. We design and implement three different scheduler-cooperative locks that work well with proportional-share schedulers: a user-level mutex lock (u-SCL), a reader-writer lock (RWSCL), and a simplified kernel implementation (k-SCL). We demonstrate the effectiveness of SCLs in two user-space applications (UpScaleDB and KyotoCabinet) and the Linux kernel. In all three cases, regardless of lock usage patterns, SCLs ensure that each thread receives proportional lock allocations that match those of the CPU scheduler. Using microbenchmarks, we show that SCLs are efficient and achieve high performance with minimal overhead under extreme workloads.more » « less
-
FaaS (Function-as-a-Service) workloads feature unique patterns. Serverless functions are ephemeral, highly concurrent, and bursty, with an execution duration ranging from a few milliseconds to a few seconds. The workload behaviors pose new challenges to kernel scheduling. Linux CFS (Completely Fair Scheduler) is workload-oblivious and optimizes long-term fairness via proportional sharing. CFS neglects the short-term demands of CPU time from short-lived serverless functions, severely impacting the performance of short functions. Preemptive shortest job first—shortest remaining process time (SRPT)—prioritizes shorter functions in order to satisfy their short-term demands of CPU time and, therefore, serves as a best-case baseline for optimizing the turnaround time of short functions. A significant downside of approximating SRPT, however, is that longer functions might be starved. In this paper, we propose a novel application-aware kernel scheduler, ALPS (Adaptive Learning, Priority Scheduler), based on two key insights. First, approximating SRPT can largely benefit short functions but may inevitably penalize long functions. Second, CFS provides necessary infrastructure support to implement user-defined priority scheduling. To this end, we design ALPS to have a novel, decoupled scheduler frontend and backend architecture, which unifies approximate SRPT and proportional-share scheduling. ALPS’ frontend sits in the user space and approximates SRPT-inspired priority scheduling by adaptively learning from an SRPT simulation on a recent past workload. ALPS’ backend uses eBPF functions hooked to CFS to carry out the continuously learned policies sent from the frontend to inform scheduling decisions in the kernel. This design adds workload intelligence to workload-oblivious OS scheduling while retaining the desirable properties of OS schedulers. We evaluate ALPS extensively using two production FaaS workloads (Huawei and Azure), and results show that ALPS achieves a reduction of 57.2% in average function execution duration compared to CFS.more » « less
-
Kernel task scheduling is important for application performance, adaptability to new hardware, and complex user requirements. However, developing, testing, and debugging new scheduling algorithms in Linux, the most widely used cloud operating system, is slow and difficult. We developed Enoki, a framework for high velocity development of Linux kernel schedulers. Enoki schedulers are written in safe Rust, and the system supports live upgrade of new scheduling policies into the kernel, userspace debugging, and bidirectional communication with applications. A scheduler implemented with Enoki achieved near identical performance (within 1% on average) to the default Linux scheduler CFS on a wide range of benchmarks. Enoki is also able to support a range of research schedulers, specifically the Shinjuku scheduler, a locality aware scheduler, and the Arachne core arbiter, with good performance.more » « less
-
Today’s high-performance computing (HPC) platforms are still dominated by batch jobs. Accordingly, effective batch job scheduling is crucial to obtain high system efficiency. Existing HPC batch job schedulers typically leverage heuristic priority functions to prioritize and schedule jobs. But, once configured and deployed by the experts, such priority function scan hardly adapt to the changes of job loads, optimization goals, or system settings, potentially leading to degraded system efficiency when changes occur. To address this fundamental issue, we present RLScheduler, an automated HPC batch job scheduler built on reinforcement learning. RLScheduler relies on minimal manual interventions or expert knowledge, but can learn high-quality scheduling policies via its own continuous ‘trial and error’. We introduce a new kernel-based neural network structure and trajectory filtering mechanism in RLScheduler to improve and stabilize the learning process. Through extensive evaluations,we confirm that RLScheduler can learn high-quality scheduling policies towards various workloads and various optimization goals with relatively low computation cost. Moreover, we show that the learned models perform stably even when applied to unseen workloads, making them practical for production use.more » « less
-
Summary In this study, we provide an extensive survey on wide spectrum of scheduling methods for multitasking among graphics processing unit (GPU) computing tasks. We then design several schedulers and explain in detail the selected methods we have developed to implement our scheduling strategies. Next, we compare the performance of schedulers on various workloads running on Fermi and Kepler architectures and arrive at the following major conclusions: (1) Small kernels benefit from running kernels concurrently. (2) The combination of small kernels, high‐priority kernels with longer runtimes, and lower‐priority kernels with shorter runtimes benefits from a CPU scheduler that dynamically changes kernel order on the Fermi architecture. (3) Because of limitations of existing GPU architectures, currently CPU schedulers outperform their GPU counterparts. We also provide results and observations obtained from implementing and evaluating our schedulers on the NVIDIA Jetson TX1 system‐on‐chip architecture. We observe that although TX1 has the newer Maxwell architecture, the mechanism used for scheduler timings behaves differently on TX1 compared to Kepler leading to incorrect timings. In this paper, we describe our methods that allow us to report correct timings for CPU schedulers running on TX1. Finally, we propose new research directions involving the investigation of additional scheduling strategies.