skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 10, 2025

Title: ALPS: An Adaptive Learning, Priority OS Scheduler for Serverless Functions
FaaS (Function-as-a-Service) workloads feature unique patterns. Serverless functions are ephemeral, highly concurrent, and bursty, with an execution duration ranging from a few milliseconds to a few seconds. The workload behaviors pose new challenges to kernel scheduling. Linux CFS (Completely Fair Scheduler) is workload-oblivious and optimizes long-term fairness via proportional sharing. CFS neglects the short-term demands of CPU time from short-lived serverless functions, severely impacting the performance of short functions. Preemptive shortest job first—shortest remaining process time (SRPT)—prioritizes shorter functions in order to satisfy their short-term demands of CPU time and, therefore, serves as a best-case baseline for optimizing the turnaround time of short functions. A significant downside of approximating SRPT, however, is that longer functions might be starved. In this paper, we propose a novel application-aware kernel scheduler, ALPS (Adaptive Learning, Priority Scheduler), based on two key insights. First, approximating SRPT can largely benefit short functions but may inevitably penalize long functions. Second, CFS provides necessary infrastructure support to implement user-defined priority scheduling. To this end, we design ALPS to have a novel, decoupled scheduler frontend and backend architecture, which unifies approximate SRPT and proportional-share scheduling. ALPS’ frontend sits in the user space and approximates SRPT-inspired priority scheduling by adaptively learning from an SRPT simulation on a recent past workload. ALPS’ backend uses eBPF functions hooked to CFS to carry out the continuously learned policies sent from the frontend to inform scheduling decisions in the kernel. This design adds workload intelligence to workload-oblivious OS scheduling while retaining the desirable properties of OS schedulers. We evaluate ALPS extensively using two production FaaS workloads (Huawei and Azure), and results show that ALPS achieves a reduction of 57.2% in average function execution duration compared to CFS.  more » « less
Award ID(s):
2318628 2322860
PAR ID:
10556517
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
2024 USENIX Annual Technical Conference (ATC 2024)
Date Published:
ISBN:
978-1-939133-41-0
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Serverless computing enables a new way of building and scaling cloud applications by allowing developers to write fine-grained serverless or cloud functions. The execution duration of a cloud function is typically short---ranging from a few milliseconds to hundreds of seconds. However, due to resource contentions caused by public clouds' deep consolidation, the function execution duration may get significantly prolonged and fail to accurately account for the function's true resource usage. We observe that the function duration can be highly unpredictable with huge amplification of more than 50× for an open-source FaaS platform (OpenLambda). Our experiments show that the OS scheduling policy of cloud functions' host server can have a crucial impact on performance. The default Linux scheduler, CFS (Completely Fair Scheduler), being oblivious to workloads, frequently context-switches short functions, causing a turnaround time that is much longer than their service time. We propose SFS (Smart Function Scheduler), which works entirely in the user space and carefully orchestrates existing Linux FIFO and CFS schedulers to approximate Shortest Remaining Time First (SRTF). SFS uses two-level scheduling that seamlessly combines a new FILTER policy with Linux CFS, to trade off increased duration of long functions for significant performance improvement for short functions. We implement SFS in the Linux user space and port it to OpenLambda. Evaluation results show that SFS significantly improves short functions' duration with a small impact on relatively longer functions, compared to CFS. 
    more » « less
  2. Current serverless Function-as-a-Service (FaaS) platforms generally use simple, classic scheduling algorithms for distributing function invocations while ignoring FaaS characteristics such as rapid changes in resource utilization and the freeze-thaw life cycle. In this paper, we present FaaSRank, a function scheduler for serverless FaaS platforms based on information monitored from servers and functions. FaaSRank automatically learns scheduling policies through experience using reinforcement learning (RL) and neural networks supported by our novel Score-Rank-Select architecture. We implemented FaaSRank in Apache OpenWhisk, an open source FaaS platform, and evaluated performance against other baseline schedulers including OpenWhisk's default scheduler on two 13-node OpenWhisk clusters. For training and evaluation, we adapted real-world serverless workload traces provided by Microsoft Azure. For the duration of test workloads, FaaSRank sustained on average a lower number of inflight invocations 59.62 % and 70.43 % as measured on two clusters respectively. We also demonstrate the generalizability of FaaSRank for any workload. When trained using a composite of 50 episodes each for 10 distinct random workloads, FaaSRank reduced average function completion time by 23.05% compared to OpenWhisk's default scheduler. 
    more » « less
  3. The increased use of micro-services to build web applications has spurred the rapid growth of Function-as-a-Service (FaaS) or serverless computing platforms. While FaaS simplifies provisioning and scaling for application developers, it introduces new challenges in resource management that need to be handled by the cloud provider. Our analysis of popular serverless workloads indicates that schedulers need to handle functions that are very short-lived, have unpredictable arrival patterns, and require expensive setup of sandboxes. The challenge of running a large number of such functions in a multi-tenant cluster makes existing scheduling frameworks unsuitable. We present Archipelago, a platform that enables low latency request execution in a multi-tenant serverless setting. Archipelago views each application as a DAG of functions, and every DAG in associated with a latency deadline. Archipelago achieves its per-DAG request latency goals by: (1) partitioning a given cluster into a number of smaller worker pools, and associating each pool with a semi-global scheduler (SGS), (2) using a latency-aware scheduler within each SGS along with proactive sandbox allocation to reduce overheads, and (3) using a load balancing layer to route requests for different DAGs to the appropriate SGS, and automatically scale the number of SGSs per DAG. Our testbed results show that Archipelago meets the latency deadline for more than 99% of realistic application request workloads, and reduces tail latencies by up to 36X compared to state-of-the-art serverless platforms. 
    more » « less
  4. We introduce the scheduler subversion problem, where lock usage patterns determine which thread runs, thereby subverting CPU scheduling goals. To mitigate this problem, we introduce Scheduler-Cooperative Locks (SCLs), a new family of locking primitives that controls lock usage and thus aligns with system-wide scheduling goals; our initial work focuses on proportional share schedulers. Unlike existing locks, SCLs provide an equal (or proportional) time window called lock opportunity within which each thread can acquire the lock. We design and implement three different scheduler-cooperative locks that work well with proportional-share schedulers: a user-level mutex lock (u-SCL), a reader-writer lock (RWSCL), and a simplified kernel implementation (k-SCL). We demonstrate the effectiveness of SCLs in two user-space applications (UpScaleDB and KyotoCabinet) and the Linux kernel. In all three cases, regardless of lock usage patterns, SCLs ensure that each thread receives proportional lock allocations that match those of the CPU scheduler. Using microbenchmarks, we show that SCLs are efficient and achieve high performance with minimal overhead under extreme workloads. 
    more » « less
  5. We introduce the scheduler subversion problem, where lock usage patterns determine which thread runs, thereby subverting CPU scheduling goals. To mitigate this problem, we introduce Scheduler-Cooperative Locks (SCLs), a new family of locking primitives that controls lock usage and thus aligns with system-wide scheduling goals; our initial work focuses on proportional share schedulers. Unlike existing locks, SCLs provide an equal (or proportional) time window called lock opportunity within which each thread can acquire the lock. We design and implement three different scheduler-cooperative locks that work well with proportional-share schedulers: a user-level mutex lock (u-SCL), a reader-writer lock (RWSCL), and a simplified kernel implementation (k-SCL). We demonstrate the effectiveness of SCLs in two user-space applications (UpScaleDB and KyotoCabinet) and the Linux kernel. In all three cases, regardless of lock usage patterns, SCLs ensure that each thread receives proportional lock allocations that match those of the CPU scheduler. Using microbenchmarks, we show that SCLs are efficient and achieve high performance with minimal overhead under extreme workloads. 
    more » « less