skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Home, SafeHome: Ensuring a Safe and Reliable Home Using the Edge
As smart home environments get more complex and denser, they are becoming harder to manage. We present our ongoing work on the design and implementation of ``SafeHome'', a system for management and coordination inside a smart home. SafeHome offers users and programmers the flexibility to specify safety properties in a declarative way, and to specify routines of commands in an imperative way. SafeHome includes mechanisms which ensure that under concurrent routines and device failures, the smart home behavior is consistent (e.g., serializable) and safety properties are always guaranteed. SafeHome is intended to run on edge machines co-located with the smart home. Our design space opens the opportunity to borrow and adapt rich ideas and mechanisms from related areas such as databases and compilers. Paper available (Open Access) at: https://www.usenix.org/conference/hotedge19/presentation/ahsan  more » « less
Award ID(s):
1908888
PAR ID:
10175830
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings Usenix Workshop on Hot Topics in Edge Computing (HotEdge) 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Home automation platforms enable consumers to conveniently automate various physical aspects of their homes. However, the security flaws in the platforms or integrated third-party products can have serious security and safety implications for the user’s physical environment. This article describes our systematic security evaluation of two popular smart home platforms, Google’s Nest platform and Philips Hue, which implement home automation “routines” (i.e., trigger-action programs involving apps and devices) via manipulation of state variables in a centralized data store . Our semi-automated analysis examines, among other things, platform access control enforcement, the rigor of non-system enforcement procedures, and the potential for misuse of routines, and it leads to 11 key findings with serious security implications. We combine several of the vulnerabilities we find to demonstrate the first end-to-end instance of lateral privilege escalation in the smart home, wherein we remotely disable the Nest Security Camera via a compromised light switch app. Finally, we discuss potential defenses, and the impact of the continuous evolution of smart home platforms on the practicality of security analysis. Our findings draw attention to the unique security challenges of smart home platforms and highlight the importance of enforcing security by design. 
    more » « less
  2. Smart home technologies are making their way into families. Parents' and children's shared use of smart home technologies has received growing attention in CSCW and related research communities. Families and children are also frequently featured as target audiences in smart home product marketing. However, there is limited knowledge of how exactly children and family interactions are portrayed in smart home product marketing, and to what extent those portrayals align with the actual consideration of children and families in product features and resources for child safety and privacy. We conducted a content analysis of product websites and online resources of 102 smart home products, as these materials constitute a main marketing channel and information source about products for consumers. We found that despite featuring children in smart home marketing, most analyzed product websites did not mention child safety features and lacked sufficient information on how children's data is collected and used. Specifically, our findings highlight misalignments in three aspects: (1) children are depicted as users of smart home products but there are insufficient child-friendly product features; (2) harmonious child-product co-presence is portrayed but potential child safety issues are neglected; and (3) children are shown as the subject of monitoring and datafication but there is limited information on child data collection and use. We discuss how parent-child relationships and parenting may be negatively impacted by such marketing depictions, and we provide design and policy recommendations for better incorporating child safety and privacy considerations into smart home products. 
    more » « less
  3. Home automation platforms provide a new level of convenience by enabling consumers to automate various aspects of physical objects in their homes. While the convenience is beneficial, security flaws in the platforms or integrated third-party products can have serious consequences for the integrity of a user's physical environment. In this paper we perform a systematic security evaluation of two popular smart home platforms, Google's Nest platform and Philips Hue, that implement home automation "routines" (i.e., trigger-action programs involving apps and devices) via manipulation of state variables in a centralized data store. Our semi-automated analysis examines, among other things, platform access control enforcement, the rigor of non-system enforcement procedures, and the potential for misuse of routines. This analysis results in ten key findings with serious security implications. For instance, we demonstrate the potential for the misuse of smart home routines in the Nest platform to perform a lateral privilege escalation, illustrate how Nest's product review system is ineffective at preventing multiple stages of this attack that it examines, and demonstrate how emerging platforms may fail to provide even bare-minimum security by allowing apps to arbitrarily add/remove other apps from the user's smart home. Our findings draw attention to the unique security challenges of platforms that execute routines via centralized data stores, and highlight the importance of enforcing security by design in emerging home automation platforms. 
    more » « less
  4. With the increasing adoption of smart home devices, users rely on device automation to control their homes. This automation commonly comes in the form of smart home routines, an abstraction available via major vendors. Yet, questions remain about how a system should best handle conflicts in which different routines access the same devices simultaneously. In particular---among the myriad ways a smart home system could handle conflicts, which of them are currently utilized by existing systems, and which ones result in the highest user satisfaction? We investigate the first question via a survey of existing literature and find a set of conditions, modifications, and system strategies related to handling conflicts. We answer the second question via a scenario-based Mechanical-Turk survey of users interested in owning smart home devices and current smart home device owners (N=197). We find that: (i) there is no context-agnostic strategy that always results in high user satisfaction, and (ii) users' personal values frequently form the basis for shaping their expectations of how routines should execute. 
    more » « less
  5. null (Ed.)
    Smart environments (homes, factories, hospitals, buildings) contain an increasing number of IoT devices, making them complex to manage. Today, in smart homes when users or triggers initiate routines (i.e., a sequence of commands), concurrent routines and device failures can cause incongruent outcomes. We describe SafeHome, a system that provides notions of atomicity and serial equivalence for smart homes. Due to the human-facing nature of smart homes, SafeHome offers a spectrum of visibility models which trade off between responsiveness vs. isolation of the smart home. We implemented SafeHome and performed workload-driven experiments. We find that a weak visibility model, called eventual visibility, is almost as fast as today's status quo (up to 23% slower) and yet guarantees serially-equivalent end states. 
    more » « less