Home automation platforms enable consumers to conveniently automate various physical aspects of their homes. However, the security flaws in the platforms or integrated third-party products can have serious security and safety implications for the user’s physical environment. This article describes our systematic security evaluation of two popular smart home platforms, Google’s Nest platform and Philips Hue, which implement home automation “routines” (i.e., trigger-action programs involving apps and devices) via manipulation of state variables in a centralized data store . Our semi-automated analysis examines, among other things, platform access control enforcement, the rigor of non-system enforcement procedures, and the potential formore »
A Study of Data Store-based Home Automation
Home automation platforms provide a new level of convenience by enabling consumers to automate various aspects of physical objects in their homes. While the convenience is beneficial, security flaws in the platforms or integrated third-party products can have serious consequences for the integrity of a user's physical environment. In this paper we perform a systematic security evaluation of two popular smart home platforms, Google's Nest platform and Philips Hue, that implement home automation "routines" (i.e., trigger-action programs involving apps and devices) via manipulation of state variables in a centralized data store. Our semi-automated analysis examines, among other things, platform access control enforcement, the rigor of non-system enforcement procedures, and the potential for misuse of routines. This analysis results in ten key findings with serious security implications. For instance, we demonstrate the potential for the misuse of smart home routines in the Nest platform to perform a lateral privilege escalation, illustrate how Nest's product review system is ineffective at preventing multiple stages of this attack that it examines, and demonstrate how emerging platforms may fail to provide even bare-minimum security by allowing apps to arbitrarily add/remove other apps from the user's smart home. Our findings draw attention to the unique security more »
- Award ID(s):
- 1815336
- Publication Date:
- NSF-PAR ID:
- 10173156
- Journal Name:
- Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy
- Page Range or eLocation-ID:
- 73 to 84
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper focuses on developing a security mechanism geared towards appified smart-home platforms. Such platforms often expose programming interfaces for developing automation apps that mechanize different tasks among smart sensors and actuators (e.g., automatically turning on the AC when the room temperature is above 80 F). Due to the lack of effective access control mechanisms, these automation apps can not only have unrestricted access to the user's sensitive information (e.g., the user is not at home) but also violate user expectations by performing undesired actions. As users often obtain these apps from unvetted sources, a malicious app can wreak havocmore »
-
Emerging smart home platforms, which interface with a variety of physical devices and support third-party application development, currently use permission models inspired by smartphone operating systems—the permission to access operations are separated by the device which performs them instead of their functionality. Unfortunately, this leads to two issues: (1) apps that do not require access to all of the granted device operations have overprivileged access to them, (2) apps might pose a higher risk to users than needed because physical device operations are fundamentally risk-asymmetric — “door.unlock” provides access to burglars, and “door.lock” can potentially lead to getting locked out.more »
-
The NTT (Nippon Telegraph and Telephone) Data Corporation report found that 80% of U.S. consumers are concerned about their smart home data security. The Internet of Things (IoT) technology brings many benefits to people's homes, and more people across the world are heavily dependent on the technology and its devices. However, many IoT devices are deployed without considering security, increasing the number of attack vectors available to attackers. Numerous Internet of Things devices lacking security features have been compromised by attackers, resulting in many security incidents. Attackers can infiltrate these smart home devices and control the home via turning offmore »
-
Typical Internet of Things (IoT) and smart home environments are composed of smart devices that are controlled and orchestrated by applications developed and run in the cloud. Correctness is important for these applications, since they control the home's physical security (i.e. door locks) and systems (i.e. HVAC). Unfortunately, many smart home applications and systems exhibit poor security characteristics and insufficient system support. Instead they force application developers to reason about a combination of complicated scenarios-asynchronous events and distributed devices. This paper demonstrates that existing cloud-based smart home platforms provide insufficient support for applications to correctly deal with concurrency and datamore »